1
|
Davidson KC, Sung M, Brown KD, Contet J, Belluschi S, Hamel R, Moreno-Moral A, Dos Santos RL, Gough J, Polo JM, Daniell M, Parfitt GJ. Single nuclei transcriptomics of the in situ human limbal stem cell niche. Sci Rep 2024; 14:6749. [PMID: 38514716 PMCID: PMC10957941 DOI: 10.1038/s41598-024-57242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The corneal epithelium acts as a barrier to pathogens entering the eye; corneal epithelial cells are continuously renewed by uni-potent, quiescent limbal stem cells (LSCs) located at the limbus, where the cornea transitions to conjunctiva. There has yet to be a consensus on LSC markers and their transcriptome profile is not fully understood, which may be due to using cadaveric tissue without an intact stem cell niche for transcriptomics. In this study, we addressed this problem by using single nuclei RNA sequencing (snRNAseq) on healthy human limbal tissue that was immediately snap-frozen after excision from patients undergoing cataract surgery. We identified the quiescent LSCs as a sub-population of corneal epithelial cells with a low level of total transcript counts. Moreover, TP63, KRT15, CXCL14, and ITGβ4 were found to be highly expressed in LSCs and transiently amplifying cells (TACs), which constitute the corneal epithelial progenitor populations at the limbus. The surface markers SLC6A6 and ITGβ4 could be used to enrich human corneal epithelial cell progenitors, which were also found to specifically express the putative limbal progenitor cell markers MMP10 and AC093496.1.
Collapse
Affiliation(s)
- Kathryn C Davidson
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | | | - Karl D Brown
- Centre for Eye Research Australia (CERA), Melbourne, Australia
| | - Julian Contet
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | | | | | | | | | - Julian Gough
- Mogrify Limited, Cambridge, England, UK
- MRC Laboratory of Molecular Biology, Cambridge, England, UK
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Mogrify Limited, Cambridge, England, UK.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
- Adelaide Centre for Epigenetics, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| | - Mark Daniell
- Centre for Eye Research Australia (CERA), Melbourne, Australia.
| | - Geraint J Parfitt
- Mogrify Limited, Cambridge, England, UK.
- Ophthalmology Discovery Research, AbbVie, Irvine, CA, USA.
| |
Collapse
|
2
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
3
|
Mesa AM, Mao J, Medrano TI, Bivens NJ, Jurkevich A, Tuteja G, Cooke PS, Rosenfeld CS. Spatial Transcriptomics analysis of uterine gene expression in enhancer of Zeste homolog 2 (Ezh2) conditional knockout mice. Biol Reprod 2021; 105:1126-1139. [PMID: 34344022 DOI: 10.1093/biolre/ioab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.
Collapse
Affiliation(s)
- Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA.,Grupo de Investigación en Agrociencias, Biodiversidad y Territorio - GAMMA, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 N° 52-21, Medellín, Colombia
| | - Jiude Mao
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Nathan J Bivens
- Genomics Technology, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Geetu Tuteja
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Cheryl S Rosenfeld
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.,Data Science and Informatics Institute, University of Missouri, Columbia; MO 65211, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|