1
|
Bellinazzo F, Nadal Bigas J, Hogers RAH, Kodde J, van der Wal F, Kokkinopoulou P, Duijts KTM, Angenent GC, van Dijk ADJ, van Velzen R, Immink RGH. Evolutionary origin and functional investigation of the widely conserved plant PEBP gene STEPMOTHER OF FT AND TFL1 (SMFT). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1410-1420. [PMID: 39364782 DOI: 10.1111/tpj.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom. The YY-PEBP clade in plants seems to have resulted from a single Horizontal Gene Transfer (HGT) episode from a prokaryotic organism to an ancestral streptophyte. YY-PEBPs are also present in other eukaryotes, such as certain fungi, diatoms, and rotifers, and these cases derive from independent HGT events. Reciprocally, the occurrence of the eukaryotic CETS/RKIP type PEBPs (CR-PEBPs) was noticed in bacteria of the genus Nocardia, showing that HGT has occurred as well from eukaryotes to prokaryotes. Based on these observations, we propose that the current model of the PEBP family in plants needs to be updated with the clade STEPMOTHER OF FT AND TFL1 (SMFT). SMFT genes not only share high sequence conservation but also show specific expression in homologous plant structures that serve as propagules. Functional analysis of Arabidopsis smft mutant lines pointed to a function for this gene in regulating seed germination, both concerning primary dormancy release and in response to adverse high-temperature conditions. Overall, our study reveals an increasing complexity in the evolutionary history of the PEBP gene family, unlocking new potential in understanding the evolution and functional spectrum of these important key regulatory genes.
Collapse
Affiliation(s)
- Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rensco A H Hogers
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Jan Kodde
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Kilian T M Duijts
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
3
|
Zhang MM, Zhao X, He X, Zheng Q, Huang Y, Li Y, Ke S, Liu ZJ, Lan S. Genome-Wide Identification of PEBP Gene Family in Two Dendrobium Species and Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:17463. [PMID: 38139293 PMCID: PMC10743876 DOI: 10.3390/ijms242417463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.Z.); (X.H.); (S.K.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
4
|
Sun Y, Jia X, Yang Z, Fu Q, Yang H, Xu X. Genome-Wide Identification of PEBP Gene Family in Solanum lycopersicum. Int J Mol Sci 2023; 24:ijms24119185. [PMID: 37298136 DOI: 10.3390/ijms24119185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The PEBP gene family is crucial for the growth and development of plants, the transition between vegetative and reproductive growth, the response to light, the production of florigen, and the reaction to several abiotic stressors. The PEBP gene family has been found in numerous species, but the SLPEBP gene family has not yet received a thorough bioinformatics investigation, and the members of this gene family are currently unknown. In this study, bioinformatics was used to identify 12 members of the SLPEBP gene family in tomato and localize them on the chromosomes. The physicochemical characteristics of the proteins encoded by members of the SLPEBP gene family were also examined, along with their intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements. In parallel, a phylogenetic tree was built and the collinear relationships of the PEBP gene family among tomato, potato, pepper, and Arabidopsis were examined. The expression of 12 genes in different tissues and organs of tomato was analyzed using transcriptomic data. It was also hypothesized that SLPEBP3, SLPEBP5, SLPEBP6, SLPEBP8, SLPEBP9, and SLPEBP10 might be related to tomato flowering and that SLPEBP2, SLPEBP3, SLPEBP7, and SLPEBP11 might be related to ovary development based on the tissue-specific expression analysis of SLPEBP gene family members at five different stages during flower bud formation to fruit set. This article's goal is to offer suggestions and research directions for further study of tomato PEBP gene family members.
Collapse
Affiliation(s)
- Yimeng Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xinyi Jia
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Zhenru Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Qingjun Fu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| |
Collapse
|
5
|
He J, Gu L, Tan Q, Wang Y, Hui F, He X, Chang P, Gong D, Sun Q. Genome-wide analysis and identification of the PEBP genes of Brassica juncea var. Tumida. BMC Genomics 2022; 23:535. [PMID: 35870881 PMCID: PMC9308242 DOI: 10.1186/s12864-022-08767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phosphatidylethanolamine-binding protein (PEBP) is widely present in animals, plants, and microorganisms. Plant PEBP genes are mainly involved in flowering transition and nutritional growth. These genes have been studied in several plants; however, to the best of our knowledge, no studies have explored them in Brassica juncea var. tumida. This study identified and characterized the entire PEBP gene family of Brassica juncea var. tumida.
Results
A total of 21 PEBP genes were identified from Brassica juncea var. tumida. Through phylogenetic analysis, the 21 corresponding proteins were classified into the following four clusters: TERMINAL FLOWER 1 (TFL1)-like proteins (n = 8), MOTHER OF FT AND TFL1 (MFT)-like proteins (n = 5), FLOWERING LOCUS T (FT)-like proteins (n = 6), and ybhB-like proteins (n = 2). A total of 18 genes contained four exons and had similar gene structures in each subfamily except BjMFT1, BjPYBHB1, and Arabidopsis thaliana CENTRORADIALIS homolog of Brassica juncea var. tumida (BjATC1). In the analysis of conserved motif composition, the BjPEBP genes exhibited similar characteristics, except for BjFT3, BjMFT1, BjPYBHB1, BjPYBHB2, and BjATC1. The BjPEBP promoter includes multiple cis-acting elements such as the G-box and I-box elements that respond to light, ABRE and GARE-motif elements that respond to hormones, and MBSI and CAT-box elements that are associated with plant growth and development. Analysis of RNA-Seq data revealed that the expression of a few BjPEBP genes may be associated with the development of a tumorous stem. The results of qRT–PCR showed that BjTFL1 and BjPYBHB1 were highly expressed in the flower tissue, BjFT1 and BjATC1 were mainly expressed in the root, and BjMFT4 were highly detected in the stem. The results of yeast two-hybrid screening suggested that BjFT interacts with Bj14-3-3. These results indicate that BjFT is involved in flowering regulation.
Conclusions
To the best of our knowledge, this study is the first to perform a genome-wide analysis of PEBP genes family in Brassica juncea var. tumida. The findings of this study may help improve the yield and molecular breeding of Brassica juncea var. tumida.
Collapse
|
6
|
Sheng X, Yu H, Wang J, Shen Y, Gu H. Establishment of a stable, effective and universal genetic transformation technique in the diverse species of Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2022; 13:1021669. [PMID: 36311069 PMCID: PMC9597678 DOI: 10.3389/fpls.2022.1021669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Brassica oleracea is an economically important species, including seven cultivated variants. Agrobacterium-mediated transformation of B. oleracea crops, mainly via hypocotyl and cotyledon, has been achieved in the past. However, previously established transformation methods showed low efficiency, severe genotype limitation and a prolonged period for transformants acquisition, greatly restricting its application in functional genomic studies and crop improvement. In this study, we have compared the shoot regeneration and genetic transformation efficiency of hypocotyl, cotyledon petiole and curd peduncle explants from twelve genotypes of cauliflower and broccoli. Finally, an Agrobacterium-mediated transformation method using curd peduncle as explant was established, which is rapid, efficient, and amenable to high-throughput transformation and genome editing. The average genetic transformation efficiency of this method is stable up to 11.87% and was successfully implemented in twelve different genotypes of cauliflower and broccoli and other B. oleracea crops with low genotype dependence. Peduncle explants were found to contain abundant cambial cells with a strong cell division and shoot regeneration ability, which might be why this method achieved stable and high genetic transformation efficiency with almost no genotype dependence.
Collapse
|
7
|
Tsoy O, Mushegian A. Florigen and its homologs of FT/CETS/PEBP/RKIP/YbhB family may be the enzymes of small molecule metabolism: review of the evidence. BMC PLANT BIOLOGY 2022; 22:56. [PMID: 35086479 PMCID: PMC8793217 DOI: 10.1186/s12870-022-03432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity ("florigen") went on for many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are located at the rim of a well-defined cavity on the protein surface. RESULTS We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active center than a catalytically inert ligand-binding site. CONCLUSIONS We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. Those metabolites may constitute an overlooked essential ingredient of the florigen signal.
Collapse
Affiliation(s)
- Olga Tsoy
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 3, Maximus-von-Imhof-Forum, 85354, Freising, Germany
- Current address: Chair of Computational Systems Biology, University of Hamburg, Notkestrasse, 9, 22607, Hamburg, Germany
| | - Arcady Mushegian
- Molecular and Cellular Biology Division, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia, 22314, USA.
- Clare Hall College, University of Cambridge, Cambridge, CB3 9AL, UK.
| |
Collapse
|