1
|
Albert L, Potheegadoo J, Herbelin B, Bernasconi F, Blanke O. Numerosity estimation of virtual humans as a digital-robotic marker for hallucinations in Parkinson's disease. Nat Commun 2024; 15:1905. [PMID: 38472203 DOI: 10.1038/s41467-024-45912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Hallucinations are frequent non-motor symptoms in Parkinson's disease (PD) associated with dementia and higher mortality. Despite their high clinical relevance, current assessments of hallucinations are based on verbal self-reports and interviews that are limited by important biases. Here, we used virtual reality (VR), robotics, and digital online technology to quantify presence hallucination (vivid sensations that another person is nearby when no one is actually present and can neither be seen nor heard) in laboratory and home-based settings. We establish that elevated numerosity estimation of virtual human agents in VR is a digital marker for experimentally induced presence hallucinations in healthy participants, as confirmed across several control conditions and analyses. We translated the digital marker (numerosity estimation) to an online procedure that 170 PD patients carried out remotely at their homes, revealing that PD patients with disease-related presence hallucinations (but not control PD patients) showed higher numerosity estimation. Numerosity estimation enables quantitative monitoring of hallucinations, is an easy-to-use unobtrusive online method, reaching people far away from medical centers, translating neuroscientific findings using robotics and VR, to patients' homes without specific equipment or trained staff.
Collapse
Affiliation(s)
- Louis Albert
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Jevita Potheegadoo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
4
|
de Chambrier AF, Sermier Dessemontet R, Martinet C, Fayol M. Rapid automatized naming skills of children with intellectual disability. Heliyon 2021; 7:e06944. [PMID: 34013083 PMCID: PMC8113839 DOI: 10.1016/j.heliyon.2021.e06944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background A deficit in Rapid Automatized Naming (RAN), acknowledged to be linked to dyslexia, has rarely been investigated as a potential explanation of the reading difficulties that children with intellectual disability (ID) often face. The existing studies mainly focused on adolescent or adults with ID matched to typically developing (TD) children on verbal mental age, or used a single RAN task. Aims The aim of this study was to compare the RAN pattern and skills of children with ID and low reading skills to the ones of TD children with matched reading skills. Method 30 children with mild to moderate ID with mixed etiology (M = 9.4 years-old) were pair-matched to 30 TD children (M = 4.3 years-old) on phonological awareness- and reading-level. They were all administered color, object, finger, and vowel RAN tasks. Outcomes and results Results showed that children with ID had more domain-specific RAN skills and were largely slower in most of the RAN tasks than their younger TD peers. Conclusions and implications This suggests that a deficit in RAN should be added to the explanations of their frequent reading difficulties, which might open new remediation possibilities.
Collapse
Affiliation(s)
- Anne-Françoise de Chambrier
- University of Teacher Education from State of Vaud, Special Needs Education Unit, Av. de Cour 33, 1014, Lausanne, Switzerland
- Corresponding author.
| | - Rachel Sermier Dessemontet
- University of Teacher Education from State of Vaud, Special Needs Education Unit, Av. de Cour 33, 1014, Lausanne, Switzerland
| | - Catherine Martinet
- University of Teacher Education from State of Vaud, Special Needs Education Unit, Av. de Cour 33, 1014, Lausanne, Switzerland
| | - Michel Fayol
- University of Clermont Auvergne, LAPSCO CNRS, Av. Carnot 34, 63000, Clermont, France
| |
Collapse
|
5
|
Ranzato E, Tolmie A, Van Herwegen J. Perceptual subitizing and conceptual subitizing in Williams syndrome and Down syndrome: Insights from eye movements. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 106:103746. [PMID: 32829255 DOI: 10.1016/j.ridd.2020.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Mathematical difficulties in individuals with Williams Syndrome (WS) and in individuals with Down Syndrome (DS) are well-established. Perceptual subitizing and conceptual subitizing are domain-specific precursors of mathematical achievement in typically developing (TD) population. This study employed, for the first time, eye-tracking methodology to investigate subitizing abilities in WS and DS. METHODS AND PROCEDURES Twenty-five participants with WS and 24 participants with DS were compared to a younger group of TD children (n = 25) matched for mental age. Participants were asked to enumerate one to six dots arranged either in a dice or a random pattern. OUTCOMES AND RESULTS Accuracy rates and analyses of reaction time showed no significant differences between the clinical groups (WS and DS) and the control group, suggesting that all participants used the same processes to perform the enumeration task in the different experimental conditions. Analyses of the eye movements showed that both individuals with WS and individuals with DS were using inefficient scanning strategies when counting. Moreover, analyses of the eye movements showed significantly shorter fixation duration in participants with DS compared to the control group in all the experimental conditions. CONCLUSIONS AND IMPLICATIONS The current study provides evidence that individuals with WS and individuals with DS perform both perceptual subitizing and conceptual subitizing. Moreover, our results suggest a fixation instability in DS group that does not affect their performance when subitizing but might explain their low accuracy rates when counting. Findings are discussed in relation to previous studies and the impact for intervention programmes to improve counting and symbolic mathematical abilities in these populations.
Collapse
Affiliation(s)
- Erica Ranzato
- Department of Psychology and Human Development, UCL Institute of Education, 20 Bedford Way, Bloomsbury, London, UK.
| | - Andrew Tolmie
- Department of Psychology and Human Development, UCL Institute of Education, 20 Bedford Way, Bloomsbury, London, UK
| | - Jo Van Herwegen
- Department of Psychology and Human Development, UCL Institute of Education, 20 Bedford Way, Bloomsbury, London, UK
| |
Collapse
|
6
|
Van Herwegen J, Simms V. Mathematical development in Williams syndrome: A systematic review. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 100:103609. [PMID: 32087508 DOI: 10.1016/j.ridd.2020.103609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The current systematic review is the first to systematically explore and synthesis research to date on mathematical abilities in Williams syndrome (WS), a rare genetic disorder that results in an uneven cognitive profile. As mathematical development is complex and relies on both domain-specific and domain-general abilities, it is currently not clear what mathematical abilities have been examined in WS and also what the current gaps in this research area are. METHODS AND PROCEDURES A total of 27 studies across 22 publications were identified through a systematic review search process. RESULTS Overall, all mathematical abilities, except for simple counting and subitizing abilities, were reported to be impaired but in line with overall mental-age abilities. However, the literature to date has not established the underlying causes of these mathematical difficulties in WS. Some studies suggested that mathematical abilities in WS follow an atypical developmental pathway with a greater reliance on verbal abilities than in typical development but coupled with impaired understanding of counting and knowledge of the number system more broadly. However, most included studies used different assessments of mathematical skills and there is a lack of studies that have examined more than one particular aspect of mathematical development within the same study. In addition, studies have often included large age ranges and small participant samples, despite the known large individual variability in WS. CONCLUSION Although we know mathematical abilities in WS are impaired, this area is under-researched and there is a lack of longitudinal studies that provide insight into the cognitive mechanisms that underpin mathematical development in WS. Therefore, there is a lack of an evidence-base to inform interventions or educational practice.
Collapse
Affiliation(s)
- Jo Van Herwegen
- Department of Psychology and Human Development, UCL Institute of Education, UK.
| | - Victoria Simms
- Department of Psychology, Ulster University, Coleraine, UK
| |
Collapse
|
7
|
Ferrara K, Hoffman JE, O’Hearn K, Landau B. Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing. JOURNAL OF COGNITION AND DEVELOPMENT 2016. [DOI: 10.1080/15248372.2016.1195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Brockhoff A, Papenmeier F, Wolf K, Pfeiffer T, Jahn G, Huff M. Viewpoint matters: Exploring the involvement of reference frames in multiple object tracking from a developmental perspective. COGNITIVE DEVELOPMENT 2016. [DOI: 10.1016/j.cogdev.2015.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Van Beek L, Ghesquière P, Lagae L, De Smedt B. Mathematical Difficulties and White Matter Abnormalities in Subacute Pediatric Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1567-78. [DOI: 10.1089/neu.2014.3809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leen Van Beek
- Parenting and Special Education Research Unit, University of Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, University of Leuven, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, University of Leuven, Belgium
| | - Bert De Smedt
- Parenting and Special Education Research Unit, University of Leuven, Belgium
| |
Collapse
|
10
|
Palomares M, Shannon MT. Global dot integration in typically developing children and in Williams syndrome. Brain Cogn 2013; 83:262-70. [PMID: 24095844 DOI: 10.1016/j.bandc.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
Williams Syndrome (WS) is a neurodevelopmental disorder that results in deficits in visuospatial perception and cognition. The dorsal stream vulnerability hypothesis in WS predicts that visual motion processes are more susceptible to damage than visual form processes. We asked WS participants and typically developing children to detect the global structure Glass patterns, under "static" and "dynamic" conditions in order to evaluate this hypothesis. Sequentially presented Glass patterns are coined as dynamic because they induce illusory motion, which is modeled after the interaction between orientation (form) and direction (motion) mechanisms. If the dorsal stream vulnerability holds in WS participants, then they should process real and illusory motion atypically. However, results are consistent with the idea that form and motion integration mechanisms are functionally delayed or attenuated in WS. Form coherence thresholds for both static and dynamic Glass patterns in WS were similar to those of 4-5year old children, younger than what is predicted by mental age. Dynamic presentation of Glass patterns improved thresholds to the same degree as typical participants. Motion coherence thresholds in WS were similar to those of mental age matches. These data pose constraints on the dorsal vulnerability hypothesis, and refine our understanding of the relationship between form and motion processing in development.
Collapse
Affiliation(s)
- Melanie Palomares
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208, United States.
| | | |
Collapse
|
11
|
O'Hearn K, Franconeri S, Wright C, Minshew N, Luna B. The development of individuation in autism. J Exp Psychol Hum Percept Perform 2012; 39:494-509. [PMID: 22963232 DOI: 10.1037/a0029400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evidence suggests that people with autism rely less on holistic visual information than typical adults. The current studies examine this by investigating core visual processes that contribute to holistic processing--namely, individuation and element grouping--and how they develop in participants with autism and typically developing (TD) participants matched for age, IQ, and gender. Individuation refers to the ability to "see" approximately four elements simultaneously; grouping elements can modify how many elements can be individuated. We examined these processes using two well-established paradigms, rapid enumeration and multiple object tracking (MOT). In both tasks, a performance limit of four elements in typical adults is thought to reflect individuation capacity. Participants with autism displayed a smaller individuation capacity than TD controls, regardless of whether they were enumerating static elements or tracking moving ones. To manipulate the holistic information available via element grouping, elements were arranged into a design in rapid enumeration, or moved together in MOT. Performance in participants with autism was affected to a similar degree as TD participants by element grouping, whether the manipulation helped or hurt performance, consistent with evidence that some types of gestalt/grouping information are processed typically in autism. There was substantial development from childhood to adolescence in the speed of individuation in those with autism, but not from adolescence to adulthood, a pattern distinct from TD participants. These results reveal how core visual processes function in autism, and provide insight into the architecture of vision (i.e., individuation appears distinct from visual strengths in autism, such as visual search).
Collapse
Affiliation(s)
- Kirsten O'Hearn
- Department of Psychiatry, University of Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Allman MJ, Pelphrey KA, Meck WH. Developmental neuroscience of time and number: implications for autism and other neurodevelopmental disabilities. Front Integr Neurosci 2011; 6:7. [PMID: 22408612 PMCID: PMC3294544 DOI: 10.3389/fnint.2012.00007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/10/2012] [Indexed: 11/17/2022] Open
Abstract
Estimations of time and number share many similarities in both non-humans and man. The primary focus of this review is on the development of time and number sense across infancy and childhood, and neuropsychological findings as they relate to time and number discrimination in infants and adults. Discussion of these findings is couched within a mode-control model of timing and counting which assumes time and number share a common magnitude representation system. A basic sense of time and number likely serves as the foundation for advanced numerical and temporal competence, and aspects of higher cognition-this will be discussed as it relates to typical childhood, and certain developmental disorders, including autism spectrum disorder. Directions for future research in the developmental neuroscience of time and number (NEUTIN) will also be highlighted.
Collapse
Affiliation(s)
- Melissa J. Allman
- Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | | | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, DurhamNC, USA
| |
Collapse
|