1
|
Kim MS, Park S, Kwon Y, Kim T, Lee CH, Jang H, Kim EJ, Jung JI, Min S, Park KH, Choi SE. Effects of Ulmus macrocarpa Extract and Catechin 7-O- β-D-apiofuranoside on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. Curr Issues Mol Biol 2024; 46:8320-8339. [PMID: 39194708 DOI: 10.3390/cimb46080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Muscle atrophy is known to be one of the symptoms leading to sarcopenia, which significantly impacts the quality of life, mortality, and morbidity. Therefore, the development of therapeutics for muscle atrophy is essential. This study focuses on addressing muscle loss and atrophy using Ulmus macrocarpa extract and its marker compound, catechin 7-O-β-D-apiofuranoside, by investigating their effects on biomarkers associated with muscle cell apoptosis. Additionally, protein and gene expression in a muscle atrophy model were examined using Western blotting and RT-PCR. Ulmus macrocarpa has been used as food or medicine due to its safety, including its roots, barks, and fruit. Catechin 7-O-β-D apiofuranoside is an indicator substance of plants of the Ulmus genus and has been reported to have various effects such as antioxidant and anti-inflammatory effects. The experimental results demonstrated that catechin glycoside and Ulmus macrocarpa extract decreased the expression of the muscle-degradation-related proteins Atrogin-1 and Muscle RING-Finger protein-1 (MuRF1) while increasing the expression of the muscle-synthesis-related proteins Myoblast determination (MyoD) and Myogenin. Gene expression confirmation experiments validated a decrease in the expression of Atrogin and MuRF1 mRNA and an increase in the expression of MyoD and Myogenin mRNA. Furthermore, an examination of muscle protein expression associated with the protein kinase B (Akt)/forkhead box O (FoxO) signaling pathway confirmed a decrease in the expression of FoxO, a regulator of muscle protein degradation. These results confirm the potential of Ulmus macrocarpa extract to inhibit muscle apoptosis, prevent muscle decomposition, and promote the development of functional materials for muscle synthesis, health-functional foods, and natural-product-derived medicines.
Collapse
Affiliation(s)
- Min Seok Kim
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Sunmin Park
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Yeeun Kwon
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - TaeHee Kim
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - HyeonDu Jang
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangil Min
- Division of Transplantation and Vascular Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
| | - Sun Eun Choi
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Hitosugi N, Hotta K, Taketa Y, Takamizawa R, Fujii Y, Ikegami R, Tamiya H, Inoue T, Tsubaki A. The effect of sepsis and reactive oxygen species on skeletal muscle interstitial oxygen pressure during contractions. Microcirculation 2024; 31:e12833. [PMID: 37800537 DOI: 10.1111/micc.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This study aims to examine the effect of sepsis on the dynamics of skeletal muscle partial oxygen pressure during muscle contractions as well as the effect of reactive oxygen species (ROS) scavenger (ascorbic acid, Asc). METHODS Twenty-seven male Sprague-Dawley rats (2-3 months old) were randomly assigned to three groups; sham, cecal ligation and puncture (CLP), or CLP plus ascorbic acid treatment group (CLP + Asc). Electrical stimuli-induced muscle contractions and partial oxygen pressure measurements were performed at 3 h after CLP. The interstitial oxygen pressure (PO2 is) in the spinotrapezius muscle was measured by the phosphorescence quenching method. RESULTS The PO2 is at rest was not different between the three groups. The PO2 is decreased from rest to contraction in all groups. Compared to the sham, the time to decrease PO2 is was significantly faster in CLP but not in CLP + Asc (p < .05). Compared to the sham, the PO2 is during muscle contractions was significantly lower in both CLP and CLP + Asc (p < .05, respectively). CONCLUSIONS Our results suggest that CLP-induced sepsis accelerated the decay of PO2 is at the onset of muscle contractions and maintained a low level of PO2 is during muscle contractions.
Collapse
Affiliation(s)
- Naoki Hitosugi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Hotta
- Department of Rehabilitation Sciences, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Yoshikazu Taketa
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ren Takamizawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yutaka Fujii
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryo Ikegami
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hajime Tamiya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Tatsuro Inoue
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Probiotic Potential of the Marine Isolate Enterococcus faecium EA9 and In Vivo Evaluation of Its Antisepsis Action in Rats. Mar Drugs 2023; 21:md21010045. [PMID: 36662218 PMCID: PMC9860781 DOI: 10.3390/md21010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1β, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.
Collapse
|
4
|
Borzykh AA, Gaynullina DK, Shvetsova AA, Kiryukhina OO, Kuzmin IV, Selivanova EK, Nesterenko AM, Vinogradova OL, Tarasova OS. Voluntary wheel exercise training affects locomotor muscle, but not the diaphragm in the rat. Front Physiol 2022; 13:1003073. [PMID: 36388097 PMCID: PMC9643685 DOI: 10.3389/fphys.2022.1003073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 12/07/2024] Open
Abstract
Introduction: Functional tests and training regimens intensity-controlled by an individual are used in sport practice, clinical rehabilitation, and space medicine. The model of voluntary wheel running in rats can be used to explore molecular mechanisms of such training regimens in humans. Respiratory and locomotor muscles demonstrate diverse adaptations to treadmill exercise, but the effects of voluntary exercise training on these muscle types have not been compared yet. Therefore, this work aimed at the effects of voluntary ET on rat triceps brachii and diaphragm muscles with special attention to reactive oxygen species, which regulate muscle plasticity during exercise. Methods: Male Wistar rats were distributed into exercise trained (ET) and sedentary (Sed) groups. ET group had free access to running wheels, running activity was continuously recorded and analyzed using the original hardware/software complex. After 8 weeks, muscle protein contents were studied using Western blotting. Results: ET rats had increased heart ventricular weights but decreased visceral/epididymal fat weights and blood triglyceride level compared to Sed. The training did not change corticosterone, testosterone, and thyroid hormone levels, but decreased TBARS content in the blood. ET rats demonstrated higher contents of OXPHOS complexes in the triceps brachii muscle, but not in the diaphragm. The content of SOD2 increased, and the contents of NOX2 and SOD3 decreased in the triceps brachii muscle of ET rats, while there were no such changes in the diaphragm. Conclusion: Voluntary wheel running in rats is intensive enough to govern specific adaptations of muscle fibers in locomotor, but not respiratory muscle.
Collapse
Affiliation(s)
- Anna A. Borzykh
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K. Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Oxana O. Kiryukhina
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kuzmin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexey M. Nesterenko
- Federal Center of Brain Research and Biotechnologies FMBA, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Olga L. Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga S. Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Stavrou G, Tzikos G, Menni AE, Chatziantoniou G, Vouchara A, Fyntanidou B, Grosomanidis V, Kotzampassi K. Endothelial Damage and Muscle Wasting in Cardiac Surgery Patients. Cureus 2022; 14:e30534. [PMID: 36415406 PMCID: PMC9675898 DOI: 10.7759/cureus.30534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
This is a post-hoc analysis to assess the effect of anesthesia, surgical trauma, and extracorporeal circuit on endothelial integrity, microvascular permeability, and extracellular fluid balance, as well as on skeletal muscle catabolism, in patients undergoing elective cardiac surgery. We included 127 well-nourished patients undergoing "on-pump" elective cardiac surgery. One day prior to surgery (D0) and again on postoperative day 7 (POD7), body mass index, body composition assessment, hand-grip strength (HGS), and mid-upper arm muscle circumference (MAMC) were measured. Patients were assigned to early recovery (ER) and late recovery (LR) groups, depending on the duration of ICU stay (cut-off 48 hours). The magnitude of change (Δ) in all parameters studied was assessed in ER versus LR groups, regarding (i) epithelial tissue dysfunction (Δ-Extra-Cellular Water percentage (Δ-ECW%), Δ-Phase Angle (Δ-PhA)), (ii) skeletal muscle mass catabolism (Δ-Skeletal muscle mass reduction%, Δ-Hand Grip Strength (Δ-HGS) and Δ-Mid Upper-Arm Muscle Circumference (Δ-MAMC)). Baseline measurements were similar in both groups. A significant difference was observed in all Δ-parameters studied (Δ-ECW%, Δ-PhA and muscle catabolism, Δ-HGS, Δ-MAMC), the worse results being correlated to the LR group. The results raise the issue that patients with early recovery may silently have pathological conditions, continuing even on the day of discharge - further research should be planned.
Collapse
Affiliation(s)
- George Stavrou
- Leeds Institute of Emergency General Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, GBR
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Georgios Chatziantoniou
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Aggeliki Vouchara
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Barbara Fyntanidou
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Vasilios Grosomanidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| |
Collapse
|
6
|
Margotti W, Goldim MPDS, Machado RS, Bagio E, Dacoregio C, Bernades G, Lanzzarin E, Stork S, Cidreira T, Denicol TL, Joaquim L, Danielski LG, Metzker KLL, Bonfante S, Margotti E, Petronilho F. Oxidative stress in multiple organs after sepsis in elderly rats. Exp Gerontol 2022; 160:111705. [DOI: 10.1016/j.exger.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/04/2022]
|
7
|
Oliveira TS, Santos AT, Andrade CBV, Silva JD, Blanco N, Rocha NDN, Woyames J, Silva PL, Rocco PRM, da-Silva WS, Ortiga-Carvalho TM, Bloise FF. Sepsis Disrupts Mitochondrial Function and Diaphragm Morphology. Front Physiol 2021; 12:704044. [PMID: 34557108 PMCID: PMC8452856 DOI: 10.3389/fphys.2021.704044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction. Methods Male C57Bl/6 mice were divided into two groups, namely, cecal ligation and puncture (CLP, n = 26) and sham-operated (n = 19). Mice received antibiotic treatment 8 h after surgery and then every 24 h until 5 days after surgery when mice were euthanized and the diaphragms were collected. Also, diaphragm function was evaluated in vivo by ultrasound 120 h after CLP. The tissue fiber profile was evaluated by the expression of myosin heavy chain and SERCA gene by qPCR and myosin protein by using Western blot. The Myod1 and Myog expressions were evaluated by using qPCR. Diaphragm ultrastructure was assessed by electron microscopy, and mitochondrial physiology was investigated by high-resolution respirometry, Western blot, and qPCR. Results Cecal ligation and puncture mice developed moderated sepsis, with a 74% survivor rate at 120 h. The diaphragm mass did not change in CLP mice compared with control, but we observed sarcomeric disorganization and increased muscle thickness (38%) during inspiration and expiration (21%). Septic diaphragm showed a reduction in fiber myosin type I and IIb mRNA expression by 50% but an increase in MyHC I and IIb protein levels compared with the sham mice. Total and healthy mitochondria were reduced by 30% in septic mice, which may be associated with a 50% decrease in Ppargc1a (encoding PGC1a) and Opa1 (mitochondria fusion marker) expressions in the septic diaphragm. The small and non-functional OPA1 isoform also increased 70% in the septic diaphragm. These data suggest an imbalance in mitochondrial function. In fact, we observed downregulation of all respiratory chain complexes mRNA expression, decreased complex III and IV protein levels, and reduced oxygen consumption associated with ADP phosphorylation (36%) in CLP mice. Additionally, the septic diaphragm increased proton leak and downregulated Sod2 by 70%. Conclusion The current model of sepsis induced diaphragm morphological changes, increased mitochondrial damage, and induced functional impairment. Thus, diaphragm damage during sepsis seems to be associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thamires Siqueira Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Teixeira Santos
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Physiology and Pharmacology Department, Biomedical Institute, Fluminense Federal University, Niteroi, Brazil
| | - Juliana Woyames
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Seixas da-Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Yoshihara T, Natsume T, Tsuzuki T, Chang SW, Kakigi R, Machida S, Sugiura T, Naito H. Long-term physical inactivity exacerbates hindlimb unloading-induced muscle atrophy in young rat soleus muscle. J Appl Physiol (1985) 2021; 130:1214-1225. [PMID: 33600278 DOI: 10.1152/japplphysiol.00494.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of long-term physical inactivity in adolescent on subsequent hindlimb unloading-induced muscle atrophy in rat soleus muscle. First, 3-wk-old male Wistar rats were assigned to an age-matched control (n = 6) or a physical inactivity (n = 8) group. Rats in the physical inactivity group were housed in narrow cages with approximately half the usual floor space for 8 wk to limit range of movement. Whole body energy consumption was measured, and the blood, organs, femoral bone, and hindlimb muscles were removed. We found that long-term physical inactivity did not affect the metabolic and physiological characteristics of growing rats. Then, fifty-six 3-wk-old male Wistar rats were assigned randomly into control (n = 28) and physical inactivity (n = 28) groups. After 8 wk, the rats in both groups underwent hindlimb unloading. The soleus muscles were removed before unloading (0 day), and 1, 3, and 7 days after unloading (n = 7 for each). Although the soleus muscle weight was significantly decreased after 7 days of hindlimb unloading in both groups, the decrease was drastic in the inactive group. A significant interaction between inactivity and unloading (P < 0.01) was observed according to the 4-hydroxynonenal-conjugated protein levels and the histone deacetylase 4 (HDAC4) and NF-κB protein levels. HDAC4 and NF-κB p65 protein levels in the physical inactivity group increased significantly 1 day after hindlimb unloading, along with the mRNA levels of their downstream targets myogenin and muscle RING finger protein 1 (MuRF1). Subsequent protein ubiquitination was upregulated by long-term physical inactivity (P < 0.05).NEW & NOTEWORTHY Long-term physical inactivity exacerbates hindlimb unloading-induced disuse muscle atrophy in young rat soleus muscles, possibly mediated by oxidative stress-induced protein ubiquitination via HDAC4- and NF-κB p65-induced MuRF1 mRNA upregulation.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | | | - Shuo-Wen Chang
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Ryo Kakigi
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Management & Information Sciences, Josai International University, Togane, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
9
|
Peixoto JVC, Santos ASR, Corso CR, da Silva FS, Capote A, Ribeiro CD, Abreu BJDGA, Acco A, Fogaça RH, Dias FAL. Thirty-day experimental diabetes impairs contractility and increases fatigue resistance in rat diaphragm muscle associated with increased anti-oxidative activity. Can J Physiol Pharmacol 2020; 98:490-497. [PMID: 32243773 DOI: 10.1139/cjpp-2019-0609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder that can generate tissue damage through several pathways. Alteration and dysfunction of skeletal muscle are reported including respiratory muscles, which may compromise respiratory parameters in diabetic patients. We have aimed to evaluate the diaphragm muscle contractility, tissue remodeling, oxidative stress, and inflammatory parameters from 30 day streptozotocin-treated rats. The diaphragm contractility was assessed using isolated muscle, tissue remodeling using histology and zymography techniques, and tissue oxidative stress and inflammatory parameters by enzyme activity assay. Our data revealed in the diabetes mellitus group an increase in maximum tetanic force (4.82 ± 0.13 versus 4.24 ± 0.18 N/cm2 (p = 0.015)) and fatigue resistance (139.16 ± 10.78 versus 62.25 ± 4.45 s (p < 0.001)), reduction of 35.4% in muscle trophism (p < 0.001), increase of 32.6% of collagen deposition (p = 0.007), reduction of 21.3% in N-acetylglucosaminidase activity (p < 0.001), and increase of 246.7% of catalase activity (p = 0.002) without changes in reactive oxygen species (p = 0.518) and tissue lipid peroxidation (p = 0.664). All observed changes are attributed to the poor glycemic control (471.20 ± 16.91 versus 80.00 ± 3.42 mg/dL (p < 0.001)), which caused defective tissue regeneration and increased catalase activity as a compensatory mechanism.
Collapse
Affiliation(s)
- João Victor Capelli Peixoto
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Antônio Sérgio Rocha Santos
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Flavio Santos da Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid, Av. Francisco Mota 572, Pres. Costa e Silva, Mossoró, Rio Grande do Norte 59625-900, Brazil
| | - Andrielle Capote
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Cibele Dias Ribeiro
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Bento João da Graça Azevedo Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 3000, Candelária, Natal, Rio Grande do Norte 59064-741, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Rosalvo Hochmueller Fogaça
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| | - Fernando Augusto Lavezzo Dias
- Department of Physiology, Federal University of Paraná, Av. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, Paraná 81531-980, Brazil
| |
Collapse
|
10
|
Zeng XM, Liu DH, Han Y, Huang ZQ, Zhang JW, Huang Q. Assessment of inflammatory markers and mitochondrial factors in a rat model of sepsis-induced myocardial dysfunction. Am J Transl Res 2020; 12:901-911. [PMID: 32269722 PMCID: PMC7137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to investigate the expression of inflammatory markers and mitochondrial function-related genes, as well as their temporal relationship with cardiac myocyte injury in a rat model of sepsis. The sepsis model was constructed using cecal ligation and puncture (CLP). Two hours after CLP, the levels of inflammatory cytokines (interleukin [IL]-1β, IL-6, and TNFα) and myocardial function markers (serum brain natriuretic peptide [BNP], cardiac troponin-I [cTNI], and procalcitonin [PCT]) were increased significantly, falling from around 9 hours postoperatively. The concentration of nitric oxide (NO) in the heart tissue was increased 6 hours after CLP. The heart rate (HR) of rats that underwent CLP decreased 2 hours after surgery and then increased to above-normal values. The left ventricular short axis shortening (FS) and left ventricular ejection fraction (LVEF) were decreased at 2 hours postoperatively and reached a minima at 6 hours. Stroke volume (SV), cardiac output (CO), and changes and heart index (CI) results indicated myocardial dysfunction. Western blot analysis demonstrated the increased expression of mitochondrial function-related proteins and activation of mitochondrial apoptotic pathways. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays revealed that the proportion of proapoptotic cells was significantly higher in rats that underwent CLP than sham surgery at 2 to 24 hours postoperatively. Taken together, our results indicate that-in the rat model-CLP-induced sepsis leads to impaired cardiac function. Furthermore, induction of the expression of mitochondrial function-related genes indicated that myocardial cell mitochondrial function was disrupted, further aggravating cardiomyocyte apoptosis. These results provide a theoretical basis for the treatment of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Xiao-Mei Zeng
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - De-Hong Liu
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Zhi-Qiang Huang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Ji-Wen Zhang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| | - Qun Huang
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital No. 3002, Sungang West Road, Shenzhen 518035, Guangdong, P. R. China
| |
Collapse
|
11
|
Moarbes V, Mayaki D, Huck L, Leblanc P, Vassilakopoulos T, Petrof BJ, Hussain SNA. Differential regulation of myofibrillar proteins in skeletal muscles of septic mice. Physiol Rep 2019; 7:e14248. [PMID: 31660704 PMCID: PMC6817996 DOI: 10.14814/phy2.14248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis elicits skeletal muscle atrophy as a result of decreased total protein synthesis and/or increased total protein degradation. It is unknown how and whether sepsis differentially affects the expression of specific myofibrillar proteins in respiratory and limb muscles. In this study, we measured the effects of sepsis myofibrillar mRNAs and their corresponding protein levels in the diaphragm (DIA) and tibialis anterior (TA) muscles in a murine cecal ligation and perforation (CLP) model of sepsis. Male mice (C57/BL6j) underwent CLP-induced sepsis. Sham-operated mice were subjected to the same surgical procedures, except for CLP. Mice were euthanized 24, 48, or 96 h postsurgery. Transcript and protein levels of autophagy-related genes, ubiquitin E3 ligases, and several myofibrillar genes were quantified. Sepsis elicited transient fiber atrophy in the DIA and prolonged atrophy in the TA. Atrophy was coincident with increased autophagy and ubiquitin E3 ligase expression. Myosin heavy chain isoforms decreased at 24 h in the DIA and across the time-course in the TA, myosin light chain isoforms decreased across the time-course in both muscles, and troponins T and C as well as tropomyosin decreased after 24 and 48 h in both the DIA and TA. α-Actin and troponin I were unaffected by sepsis. Sepsis-induced decreases in myofibrillar protein levels coincided with decreased mRNA expressions of these proteins, suggesting that transcriptional inhibition is involved. We hypothesize that sepsis-induced muscle atrophy is mediated by decreased transcription and enhanced degradation of specific myofibrillar proteins, including myosin heavy and light chains, troponin C, troponin T, and tropomyosin.
Collapse
Affiliation(s)
- Vanessa Moarbes
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| | - Dominique Mayaki
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| | - Laurent Huck
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| | - Philippe Leblanc
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| | - Theodoros Vassilakopoulos
- Critical Care Department, National & Kapodistrian University of Athens, Medical School, Evgenideion HospitalAthensGreece
- Department of MedicineMcGill University Health CentreMontréalQuébecCanada
| | - Basil J. Petrof
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| | - Sabah N. A. Hussain
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreMontréalQuébecCanada
- Department of Critical CareMcGill University Health CentreMontréalQuébecCanada
| |
Collapse
|
12
|
Hahn D, Kumar RA, Ryan TE, Ferreira LF. Mitochondrial respiration and H 2O 2 emission in saponin-permeabilized murine diaphragm fibers: optimization of fiber separation and comparison to limb muscle. Am J Physiol Cell Physiol 2019; 317:C665-C673. [PMID: 31314583 DOI: 10.1152/ajpcell.00184.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Callegaro CC, Hoffmeister AD, Porto FG, Chaves L, Horn RC, Tissiani AC, Bianchi P, Taylor JA. Inspiratory threshold loading reduces lipoperoxidation in obese and normal-weight subjects. Physiol Int 2019; 106:158-167. [PMID: 31271310 DOI: 10.1556/2060.106.2019.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is related to increased oxidative stress. Although low-intensity physical exercise reduces oxidative stress, obese subjects may show exercise intolerance. For these subjects, inspiratory threshold loading could be an alternative tool to reduce oxidative stress. We investigated the effects of inspiratory threshold loading on biomarkers of oxidative stress in obese and normal-weight subjects. Twenty obese (31.4 ± 6 years old, 10 men and 10 women, 37.5 ± 4.7 kg/m2) and 20 normal-weight (29.4 ± 8 years old, 10 men and 10 women, 23.2 ± 1.5 kg/m2) subjects matched for age and gender participated in the study. Maximal inspiratory pressure (MIP) was assessed by a pressure transducer. Blood sampling was performed before and after loading and control protocols to assess thiobarbituric acid reactive substances (TBARS), protein carbonylation, and reduced glutathione. Inspiratory threshold loading was performed at 60% MIP and maintained until task failure. The 30-min control protocol was performed at 0 cmH2O. Our results demonstrated that inspiratory threshold loading reduced TBARS across time in obese (6.21 ± 2.03 to 4.91 ± 2.14 nmol MDA/ml) and normal-weight subjects (5.60 ± 3.58 to 4.69 ± 2.80 nmol MDA/ml; p = 0.007), but no change was observed in protein carbonyls and glutathione in both groups. The control protocol showed no significant changes in TBARS and protein carbonyls. However, reduced glutathione was increased across time in both groups (obese: from 0.50 ± 0.37 to 0.56 ± 0.35 μmol GSH/ml; normal-weight: from 0.61 ± 0.11 to 0.81 ± 0.23 μmol GSH/ml; p = 0.002). These findings suggest that inspiratory threshold loading could be potentially used as an alternative tool to reduce oxidative stress in both normal-weight and obese individuals.
Collapse
Affiliation(s)
- C C Callegaro
- 1 Laboratory of Physiology and Rehabilitation, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - A D Hoffmeister
- 2 Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ) , Ijuí, Brazil.,3 University of Cruz Alta , Cruz Alta, Brazil
| | - F G Porto
- 2 Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ) , Ijuí, Brazil.,3 University of Cruz Alta , Cruz Alta, Brazil
| | - L Chaves
- 3 University of Cruz Alta , Cruz Alta, Brazil
| | - R C Horn
- 2 Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ) , Ijuí, Brazil.,3 University of Cruz Alta , Cruz Alta, Brazil
| | | | - Pda Bianchi
- 3 University of Cruz Alta , Cruz Alta, Brazil
| | - J A Taylor
- 4 Harvard Medical School , Boston, MA, USA
| |
Collapse
|