1
|
Wiecek M, Mardyla M, Szymura J, Kantorowicz M, Kusmierczyk J, Maciejczyk M, Szygula Z. Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition. Int J Mol Sci 2025; 26:350. [PMID: 39796204 PMCID: PMC11721682 DOI: 10.3390/ijms26010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM). We corrected the post-exercise results for the percentage change in plasma volume. In all groups after exercise, there was an increase in LPO and resistin. In HFAT-NLBM, additionally, an increase in CAT and a decrease in SOD activity were noted, and in NFAT-NLBM, an increase in visfatin concentration was observed. In our study, the effect was demonstrated of a maximal effort on six (LPO, CAT, SOD, visfatin, resistin, and asprosin) of the twelve parameters investigated, while the effect of body composition on all parameters investigated was insignificant. Maximal intensity aerobic exercise induces secretion of resistin and damages lipids regardless of the exercising subjects' body composition. Large fat tissue content predisposes to exercise-induced disorders in the activity of antioxidant enzymes. We have also shown that it is necessary to consider changes in blood plasma volume in the assessment of post-exercise biochemical marker levels.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (J.K.); (M.M.)
| | - Mateusz Mardyla
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (J.K.); (M.M.)
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | | | - Justyna Kusmierczyk
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (J.K.); (M.M.)
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (J.K.); (M.M.)
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| |
Collapse
|
2
|
Kusmierczyk J, Wiecek M, Bawelski M, Szygula Z, Rafa-Zablocka K, Kantorowicz M, Szymura J. Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Front Physiol 2024; 15:1413949. [PMID: 38962071 PMCID: PMC11220252 DOI: 10.3389/fphys.2024.1413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: The aim of this study was to investigate the effect of pre-exercise whole-body cryotherapy (WBC) on muscle damage indicators following eccentric treadmill exercise in young women. Methods: Twenty-seven participants underwent two 1-h downhill treadmill runs, replicating 60% of their maximal oxygen uptake, with a 4-week intermission for recovery and treatment application. In this intermission, one group underwent 20 sessions of WBC, delivered five times a week at -120°C for 3 min each, while the comparison group received no such treatment. Markers of muscle injury-serum myoglobin concentration, creatine kinase and lactate dehydrogenase activity and also uric acid, and cell-free DNA concentration-were measured before and after downhill runs. Results: The study observed a notable reduction in post-exercise myoglobin and CK levels in the WBC group after the second running session. Discussion: The results suggest that WBC can have a protective effects against muscle damage resulting from eccentric exercise.
Collapse
Affiliation(s)
- Justyna Kusmierczyk
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Marek Bawelski
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, Kraków, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
| | - Katarzyna Rafa-Zablocka
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Jadwiga Szymura
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, Kraków, Poland
- Department of Clinical Rehabilitation, University of Physical Education in Kraków, Kraków, Poland
| |
Collapse
|
3
|
Saki H, Nazem F, Fariba F, Sheikhsharbafan R. A High intensity Interval training (running and swimming) and resistance training intervention on heart rate variability and the selected biochemical factors in boys with type 1 diabetes. Diabetes Res Clin Pract 2023; 204:110915. [PMID: 37742805 DOI: 10.1016/j.diabres.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE The purpose of this research is to investigate the effect of High Intensity Interval Training and Resistance training (HIITR) on heart rate variability (HRV), blood glucose, and plasma biomarkers levels in adolescents with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS 24 boys with T1D (FBS: 274.66 ± 52.99, age: 15.2 ± 1.78 years, and BMI = 19.61 ± 1.11) and 12 healthy boys (FBS: 92.75 ± 5.22, age: 15.08 ± 1.67 years, and BMI = 20.26 ± 2.66) were divided into three groups: Diabetes Training (DT, n = 12), Diabetes Control (DC, n = 12), and Healthy Control (HC, n = 12). HRV (24 h) was computed in time and frequency domains, anthropometric, biochemical parameters at rest, and aerobic capacity (VO2peak) obtained during a graded exercise testing (GXT). All variables were evaluated at the baseline and following 12 weeks of exercise training, done 3 days weekly. The statistical method used for data analysis was analysis of covariance (ANCOVA) test. RESULTS HRV, Hemoglobin A1c (HbA1c) and Fasting blood sugar (FBS), VO2peak, norepinephrine (NEP), and HDL-C indicated significant differences between both T1D groups compared to HC at baseline (p < 0.001). BMI, LDL-C, TC, and TG parameters were similar in all groups. HRV parameters, VO2peak and HDL-C, and NEP were significantly improved by exercise training, and HbA1c and FBS levels were significantly reduced (p < 0.001). There is a negative and significant correlation between LF/HF Ratio Difference (post-test minus pre-test) and VO2Peak Difference variables (post-test minus pre-test) (p < 0.001). CONCLUSIONS The present study suggests the importance of early screening for CVD risk factors in adolescent males with T1D. Also, it was revealed HIITR training compared to other training patterns, and cardiovascular health improves via enhancement of autonomic modulation, VO2peak, plasma lipids, and catecholamine levels.
Collapse
Affiliation(s)
- Hossein Saki
- Department of Exercise Physiology, Sports Science Faculty, Hamadan Bu Ali Sina University, Iran
| | - Farzad Nazem
- Department of Exercise Physiology, Sports Science Faculty, Hamadan Bu Ali Sina University, Iran.
| | - Farnaz Fariba
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Sheikhsharbafan
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Effect of Normobaric Hypoxia on Alterations in Redox Homeostasis, Nitrosative Stress, Inflammation, and Lysosomal Function following Acute Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4048543. [PMID: 35251471 PMCID: PMC8896919 DOI: 10.1155/2022/4048543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/29/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a recognized inducer of oxidative stress during prolonged physical activity. Nevertheless, previous studies have not systematically examined the effects of normoxia and hypoxia during acute physical exercise. The study is aimed at evaluating the relationship between enzymatic and nonenzymatic antioxidant barrier, total antioxidant/oxidant status, oxidative and nitrosative damage, inflammation, and lysosomal function in different acute exercise protocols under normoxia and hypoxia. Fifteen competitive athletes were recruited for the study. They were subjected to two types of acute cycling exercise with different intensities and durations: graded exercise until exhaustion (GE) and simulated 30 km individual time trial (TT). Both exercise protocols were performed under normoxic and hypoxic (
) conditions. The number of subjects was determined based on our previous experiment, assuming the test
and
. We demonstrated enhanced enzymatic antioxidant systems during hypoxic exercise (GE: ↑ catalase (CAT), ↑ superoxide dismutase; TT: ↑ CAT) with a concomitant decrease in plasma reduced glutathione. In athletes exercising in hypoxia, redox status was shifted in favor of oxidation reactions (GE: ↑ total oxidant status, ↓ redox ratio), leading to increased oxidation/nitration of proteins (GE: ↑ advanced oxidation protein products (AOPP), ↑ ischemia-modified albumin, ↑ 3-nitrotyrosine, ↑ S-nitrosothiols; TT: ↑ AOPP) and lipids (GE: ↑ malondialdehyde). Concentrations of nitric oxide and its metabolites (peroxynitrite) were significantly higher in the plasma of hypoxic exercisers with an associated increase in inflammatory mediators (GE: ↑ myeloperoxidase, ↑ tumor necrosis factor-alpha) and lysosomal exoglycosidase activity (GE: ↑ N-acetyl-β-hexosaminidase, ↑ β-glucuronidase). Our study indicates that even a single intensive exercise session disrupts the antioxidant barrier and leads to increased oxidative and nitrosative damage at the systemic level. High-intensity exercise until exhaustion (GE) alters redox homeostasis more than the less intense exercise (TT, near the anaerobic threshold) of longer duration (
min vs.
min—normoxia;
min vs.
min—hypoxia), while hypoxia significantly exacerbates oxidative stress, inflammation, and lysosomal dysfunction in athletic subjects.
Collapse
|
5
|
Hartley A, Shun-Shin M, Caga-Anan M, Rajkumar C, Nowbar AN, Foley M, Francis DP, Haskard DO, Khamis RY, Al-Lamee RK. The Placebo-Controlled Effect of Percutaneous Coronary Intervention on Exercise Induced Changes in Anti-Malondialdehyde-LDL Antibody Levels in Stable Coronary Artery Disease: A Substudy of the ORBITA Trial. Front Cardiovasc Med 2021; 8:757030. [PMID: 34708098 PMCID: PMC8542769 DOI: 10.3389/fcvm.2021.757030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Aim: Malondialdehyde-modified low-density lipoprotein (MDA-LDL) forms a significant component of oxidised LDL. The effects of exercise on levels of MDA-LDL and anti-MDA-LDL antibodies are not well-understood. Furthermore, it is not known whether these can be modified in patients with coronary artery disease by percutaneous coronary intervention (PCI). Methods: The Objective Randomised Blinded Investigation with optimal medical Therapy of Angioplasty in stable angina (ORBITA) trial was the first blinded, multi-centre randomised trial of PCI vs. placebo procedure for angina relief. Serum samples were available at four time-points: pre-randomisation pre- (P1) and post- (P2) exercise and post-randomisation (6-weeks following the PCI or placebo procedure), pre- (P3) and post- (P4) exercise. ELISAs were performed using laboratory-developed assays for MDA-LDL (adjusted for Apolipoprotein B) and anti-MDA-LDL antibodies. Results: One hundred ninety-six of the 200 patients (age 66.1 [SD 8.99] years, 28% female) with severe single vessel coronary artery disease suitable for PCI enrolled in the ORBITA trial had blood available for analysis. With exercise at pre-randomisation (P2-P1) there was no significant change in adjusted MDA-LDL (-0.001, 95% CI -0.004 to 0.001; p = 0.287); however, IgG and IgM anti-MDA-LDL significantly declined (-0.022, 95% CI -0.029 to -0.014, p < 0.0001; -0.016, 95% CI -0.024 to -0.008, p = 0.0002, respectively). PCI did not have a significant impact on either the pre-exercise values (P3 controlling for P1) of MDA-LDL (p = 0.102), IgG (p = 0.444) or IgM anti-MDA-LDL (p = 0.909). Nor did PCI impact the exercise induced changes in these markers (P4 controlling for P1, P2, and P3) for MDA-LDL (p = 0.605), IgG (p = 0.725) or IgM anti-MDA-LDL (p = 0.171). Pre-randomisation ischaemia on stress echo did not impact these interactions. Conclusions: Exercise results in an acute reduction in anti-oxLDL antibodies in patients with severe single vessel coronary disease, possibly indicating an induction in homoeostatic clearance via the innate immune system. However, PCI did not ameliorate this effect.
Collapse
Affiliation(s)
- Adam Hartley
- Department of Vascular Sciences, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew Shun-Shin
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mikhail Caga-Anan
- Department of Vascular Sciences, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher Rajkumar
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexandra N Nowbar
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Michael Foley
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Darrel P Francis
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dorian O Haskard
- Department of Vascular Sciences, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ramzi Y Khamis
- Department of Vascular Sciences, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rasha K Al-Lamee
- Department of Cardiovascular Trials and Epidemiology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Hulton AT, Malone JJ, Campbell IT, MacLaren DPM. The effect of the menstrual cycle and hyperglycaemia on hormonal and metabolic responses during exercise. Eur J Appl Physiol 2021; 121:2993-3003. [PMID: 34235576 PMCID: PMC8505395 DOI: 10.1007/s00421-021-04754-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/18/2021] [Indexed: 11/28/2022]
Abstract
Purpose Variations in substrate metabolism have been identified in women during continuous steady-state aerobic exercise performed at the same relative intensity throughout discrete phases of the menstrual cycle, although some evidence exists that this is abolished when carbohydrate is ingested. This investigation examined the effects of a supraphysiologic exogenous glucose infusion protocol, administered during two phases of the menstrual cycle (follicular and luteal) in eumenorrheic women to identify differences between metabolic, hormonal and substrate oxidative responses. Methods During the experimental conditions, blood glucose was infused intravenously at rates to “clamp” blood glucose at 10 mM in seven healthy females (age 20 ± 1 y, mass 55.0 ± 4.1 kg, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot V{O_{2peak}}$$\end{document}V˙O2peak 40.0 ± 1.8 ml/kg/min). Following 30 min of seated rest, participants exercised on a cycle ergometer for 90 min at 60% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot V{O_{2peak}}$$\end{document}V˙O2peak. During the rest period and throughout exercise, blood metabolites and hormones were collected at regular intervals, in addition to expired air for the measurement of substrate oxidation. Results Significant differences between ovarian hormones and menstrual phase were identified, with estrogen significantly higher during the luteal phase compared to the follicular phase (213.28 ± 30.70 pmol/l vs 103.86 ± 13.85 pmol/l; p = 0.016), and for progesterone (14.23 ± 4.88 vs 2.11 ± 0.36 nmol/l; p = 0.042). However, no further significance was identified in any of the hormonal, metabolite or substrate utilisation patterns between phases. Conclusion These data demonstrate that the infusion of a supraphysiological glucose dose curtails any likely metabolic influence employed by the fluctuation of ovarian hormones in eumenorrheic women during moderate exercise.
Collapse
Affiliation(s)
- A T Hulton
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. .,Sport and Exercise Science, University of Surrey, Leggett Building, Guildford, GU2 7WG, UK.
| | - J J Malone
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - I T Campbell
- Dept of Anaesthesia, Wythenshawe Hospital, Manchester, UK
| | - D P M MacLaren
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
7
|
Truong KM, Cherednichenko G, Pessah IN. Interactions of Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) With Skeletal Muscle Ryanodine Receptor Type 1. Toxicol Sci 2020; 170:509-524. [PMID: 31127943 DOI: 10.1093/toxsci/kfz120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, and p,p'-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01-10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p'-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1-10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p'-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.
Collapse
Affiliation(s)
- Kim M Truong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Gennady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| |
Collapse
|
8
|
Kruk J, Kotarska K, Aboul-Enein BH. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res 2020; 54:105-125. [PMID: 32020819 DOI: 10.1080/10715762.2020.1726343] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beneficial effect of regular moderate physical exercise (PE) and negative effect of severe exercise and/or overtraining as an activator of the sympathetic nervous system (SNS) have been shown in numerous aspects of human health, including reduced risk of cardiovascular disease, neurological disease, depression, and some types of cancer. Moderate-to-vigorous PE stimulates the SNS activation, releasing catecholamines (CATs) adrenaline, noradrenaline, dopamine that play an important regulatory and modulatory actions by affecting metabolic processes and the immune system. Summary of the dispersed literature in this area and explanation of the biological mechanisms operating between PE-CATs and the immune system would lead to a better understanding of the beneficial and negative effects of PE on health. This overview aimed to: demonstrate representative literature findings on the exercise released CATs levels, major functions performed by these hormones, their interactions with the immune system and their effects on carbohydrate and lipid metabolism. Also, mechanisms of cytotoxic free radicals and reactive oxygen species (ROS) generation during CATs oxidation, and molecular mechanisms of CATs response to exercise are discussed to demonstrate positive and negative on human health effects. Owing to the large body of the subject literature, we present a representative cross-section of the published studies in this area. The results show a significant role of CATs in carbohydrate and lipid metabolism, immunity and as generators of ROS, depending on PE intensity and duration. Further investigation of the PE-CATs relationship should validate CATs levels to optimize safe intensity and duration of exercise and individualize their prescription, considering CATs to be applied as markers for a dose of exercise. Also, a better understanding of the biological mechanisms is also needed.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Katarzyna Kotarska
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Basil H Aboul-Enein
- Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Gokce E, Akat F, Dursun AD, Gunes E, Bayram P, Billur D, Koc E. Effects of eccentric exercise on different slopes. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:412-421. [PMID: 31789292 PMCID: PMC6944809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Eccentric contraction occurs when the muscle lengthens under tension. Damage-induced responses seen in the muscle after eccentric exercise usually experienced by sedentary individuals. This study aims to investigate muscle damage on different slopes. METHODS 32 male Wistar albino rats randomly divided into four groups: sedentary, horizontal running, and eccentric exercise (-8°, -16°) groups. Animals ran for 90 min with the speed of 25 m/s for five days. After 48h from the last exercise, rats were sacrificed, and plasma creatine kinase (CK), heat shock protein 70 (HSP70) levels were examined. Plasma and soleus total oxidant/antioxidant status (TOS-TAS) and histological changes of soleus muscle assessed. RESULTS CK and HSP70 significantly increased in 16° EE group. TOS increased at 16° EE and 8° EE, but oxidative stress index (OSI) was only high at 8° EE group. Mononuclear cell infiltration and the angiogenesis increased in soleus after eccentric exercise, and there was a correlation with slope. Sarcomere breaks were detected in 16° EE group also in a correlation with slope. CONCLUSIONS Consequently, sedentary individuals are vulnerable to injuries induced by eccentric contraction. Therefore, our study provides information for reconsidering rehabilitation and training programs.
Collapse
Affiliation(s)
- Evrim Gokce
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Firat Akat
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey,Corresponding author: Firat AKAT, Ph.D, Ankara Üniversitesi Tıp Fakültesi Morfoloji Kampüsü Fizyoloji Anabilim Dalı Sıhhiye, Ankara, Turkey E-mail: •
| | - Ali Dogan Dursun
- Atilim University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Emel Gunes
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Pinar Bayram
- Ankara University Faculty of Medicine, Department of Histology and Embryology. Ankara, Turkey,Kafkas University Faculty of Medicine, Department of Histology and Embryology, Kars, Turkey
| | - Deniz Billur
- Ankara University Faculty of Medicine, Department of Histology and Embryology. Ankara, Turkey
| | - Emine Koc
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey,Near East University Faculty of Medicine, Department of Physiology, Lefkosia, Cyprus
| |
Collapse
|
10
|
Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, Papanikolaou K, Tsimeas P, Chatzinikolaou A, Avloniti A, Tsiokanos A, Koutedakis Y. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J Sports Sci Med 2018; 17:501-508. [PMID: 30116124 PMCID: PMC6090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
A single bout of exercise can result in inflammatory responses, increased oxidative stress and upregulation of enzymatic antioxidant mechanisms. Although low-volume high-intensity interval training (HIIT) has become popular, its acute responses on the above mechanisms have not been adequately studied. The present study evaluated the effects of HIIT on hematological profile and redox status compared with those following traditional continuous aerobic exercise (CET). Twelve healthy young men participated in a randomized crossover design under HIIT and CET. In HIIT session, participants performed four 30-sec sprints on a cycle-ergometer with 4 min of recovery against a resistance of 0.375 kg/kg of body mass. CET consisted of 30-min cycling on a cycle-ergometer at 70% of their VO2max. Blood was drawn at baseline, immediately post, 24h, 48h and 72h post-exercise and was analyzed for complete blood count and redox status (thiobarbituric acid reactive substances, [TBARS]; protein carbonyls, [PC]; total antioxidant capacity, [TAC]; catalase and uric acid). White blood cells (WBC) increased after both exercise protocols immediately post-exercise (HIIT: 50% and CET: 31%, respectively). HIIT increased (+22%) PC post-exercise compared to baseline and CET (p < 0.05). HIIT increased TAC immediately post-exercise (16%) and at 24h post-exercise (11%, p < 0.05), while CET increased TAC only post-exercise (12%, p < 0.05) compared to baseline, and TAC was higher following HIIT compared to CET (p < 0.05). Both HIIT and CET increased uric acid immediately post- (21% and 5%, respectively, p < 0.05) and 24h (27% and 5%, respectively, p < 0.05) post-exercise and the rise was greater following HIIT (p < 0.05). There were no significant changes (p > 0.05) for TBARS and catalase following either exercise protocol. Low-volume HIIT is associated with a greater acute phase leukocyte count and redox response than low-volume CET, and this should be considered when an exercise training program is developed and complete blood count is performed for health purposes.
Collapse
Affiliation(s)
- Athanasios Z Jamurtas
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
- Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Greece
| | - Ioannis G Fatouros
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Chariklia K Deli
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Kalliopi Georgakouli
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Athanasios Poulios
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Dimitrios Draganidis
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | | | - Panagiotis Tsimeas
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | | | - Alexandra Avloniti
- Department of Physical Education & Sport Science, University of Thrace, Komotini, Greece
| | - Athanasios Tsiokanos
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
| | - Yiannis Koutedakis
- Department of Physical Education & Sport Science, University of Thessaly, Karies, Greece
- Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Greece
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, United Kingdom
| |
Collapse
|
11
|
Wiecek M, Szymura J, Maciejczyk M, Kantorowicz M, Szygula Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front Physiol 2018; 9:1006. [PMID: 30140236 PMCID: PMC6094974 DOI: 10.3389/fphys.2018.01006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Objective: Physical exercise changes redox balance in the blood. The study aim is to determine gender-related differences in enzymatic antioxidant defense [superoxide dismutase, catalase (CAT), and glutathione peroxidase (GPx)] during the initial period following anaerobic exercise and 24 h after its completion. Methods: Young, non-training participants (10 women and 10 men) performed a single anaerobic exercise, which was a 20-s maximal cycling sprint test. Blood was collected before and after completing the anaerobic exercise, i.e., after 3, 15, 30, and 60 min and after 24 h. Lactate concentration, and the superoxide dismutase, CAT, and GPx activity were determined. The results were adapted to the changes in plasma volume. Results: Anaerobic exercise induced a significant increase in lactate concentration, similar among both sexes. Anaerobic exercise evokes identical changes in the activity of antioxidant enzymes in the blood plasma of women and men, which is dependent on anaerobic capacity. In the early phase of restitution, the activity of antioxidant enzymes decreases; 24 h after anaerobic exercise, GPx activity in the blood plasma of women and men is higher than before the exercise. Conclusion: There are no gender-related differences concerning changes in plasma antioxidant activity after anaerobic exercise. Depending on the antioxidant enzyme, changes of activity differ in time after the end of the anaerobic exercise.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Krakow, Krakow, Poland
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Malgorzata Kantorowicz
- Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| |
Collapse
|
12
|
Brockman NK, Yardley JE. Sex-related differences in fuel utilization and hormonal response to exercise: implications for individuals with type 1 diabetes. Appl Physiol Nutr Metab 2018; 43:541-552. [PMID: 29420905 DOI: 10.1139/apnm-2017-0559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sex-related differences in metabolic and neuroendocrine response to exercise in individuals without diabetes have been well established. Men and women differ in fuel selection during exercise, in which women rely to a greater extent on fat oxidation, whereas males rely mostly on carbohydrate oxidation for energy production. The difference in fuel selection appears to be mediated by sex-related differences in hormonal (including catecholamines, growth hormone, and estrogen) response to different types and intensities of exercise. In general, men exhibit an amplified counter-regulatory response to exercise, with elevated levels of catecholamines compared with women. However, women exhibit greater sensitivity to the lipolytic action of the catecholamines and deplete less of their glycogen stores than men during exercise, which suggests that women may experience a greater defense in blood glucose control after exercise than men. Conversely, little is known about sex-related differences in response to exercise in individuals with type 1 diabetes (T1D). A single study investigating sex-related differences in response to moderate aerobic exercise in individuals with T1D found sex-related differences in catecholamine response and fuel selection, but changes in blood glucose were not measured. To our knowledge, there are no studies investigating sex-related differences in blood glucose responses to different types and intensities of exercise in individuals with T1D. This review summarizes sex-related differences in exercise responses that could potentially impact blood glucose levels during exercise in individuals with T1D and highlights the need for further research.
Collapse
Affiliation(s)
- Nicole K Brockman
- a Augustana Faculty, University of Alberta, 4901-46th Avenue, Camrose, AB T4V 2R3, Canada
| | - Jane E Yardley
- a Augustana Faculty, University of Alberta, 4901-46th Avenue, Camrose, AB T4V 2R3, Canada.,b Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, 8602-112 Street, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
13
|
Yardley JE, Brockman NK, Bracken RM. Could Age, Sex and Physical Fitness Affect Blood Glucose Responses to Exercise in Type 1 Diabetes? Front Endocrinol (Lausanne) 2018; 9:674. [PMID: 30524371 PMCID: PMC6262398 DOI: 10.3389/fendo.2018.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Closed-loop systems for patients with type 1 diabetes are progressing rapidly. Despite these advances, current systems may struggle in dealing with the acute stress of exercise. Algorithms to predict exercise-induced blood glucose changes in current systems are mostly derived from data involving relatively young, fit males. Little is known about the magnitude of confounding variables such as sex, age, and fitness level-underlying, uncontrollable factors that might influence blood glucose control during exercise. Sex-related differences in hormonal responses to physical exercise exist in studies involving individuals without diabetes, and result in altered fuel metabolism during exercise. Increasing age is associated with attenuated catecholamine responses and lower carbohydrate oxidation during activity. Furthermore, higher fitness levels can alter hormonal and fuel selection responses to exercise. Compounding the limited research on these factors in the metabolic response to exercise in type 1 diabetes is a limited understanding of how these variables affect blood glucose levels during different types, timing and intensities of activity in individuals with type 1 diabetes (T1D). Thus, there is currently insufficient information to model a closed-loop system that can predict them accurately and consistently prevent hypoglycemia. Further, studies involving both sexes, along with a range of ages and fitness levels, are needed to create a closed-loop system that will be more precise in regulating blood glucose during exercise in a wide variety of individuals with T1D.
Collapse
Affiliation(s)
- Jane E. Yardley
- Augustana Faculty, University of Alberta, Camrose, AB, Canada
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, Edmonton, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jane E. Yardley
| | | | - Richard M. Bracken
- Diabetes Research Unit and School of Sport and Exercise Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|