1
|
Yang C, Chen R, Chen C, Yang F, Xiao H, Geng B, Xia Y. Tissue engineering strategies hold promise for the repair of articular cartilage injury. Biomed Eng Online 2024; 23:92. [PMID: 39261876 PMCID: PMC11389311 DOI: 10.1186/s12938-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yuan C, Song W, Jiang X, Wang Y, Li C, Yu W, He Y. Adipose-derived stem cell-based optimization strategies for musculoskeletal regeneration: recent advances and perspectives. Stem Cell Res Ther 2024; 15:91. [PMID: 38539224 PMCID: PMC10976686 DOI: 10.1186/s13287-024-03703-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2025] Open
Abstract
Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.
Collapse
Affiliation(s)
- Chenrui Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiping Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yifei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chenkai Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Weilin Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Orthopedics, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201500, China.
| |
Collapse
|
3
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Zhang Q, Hu Y, Long X, Hu L, Wu Y, Wu J, Shi X, Xie R, Bi Y, Yu F, Li P, Yang Y. Preparation and Application of Decellularized ECM-Based Biological Scaffolds for Articular Cartilage Repair: A Review. Front Bioeng Biotechnol 2022; 10:908082. [PMID: 35845417 PMCID: PMC9280718 DOI: 10.3389/fbioe.2022.908082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cartilage regeneration is dependent on cellular-extracellular matrix (ECM) interactions. Natural ECM plays a role in mechanical and chemical cell signaling and promotes stem cell recruitment, differentiation and tissue regeneration in the absence of biological additives, including growth factors and peptides. To date, traditional tissue engineering methods by using natural and synthetic materials have not been able to replicate the physiological structure (biochemical composition and biomechanical properties) of natural cartilage. Techniques facilitating the repair and/or regeneration of articular cartilage pose a significant challenge for orthopedic surgeons. Whereas, little progress has been made in this field. In recent years, with advances in medicine, biochemistry and materials science, to meet the regenerative requirements of the heterogeneous and layered structure of native articular cartilage (AC) tissue, a series of tissue engineering scaffolds based on ECM materials have been developed. These scaffolds mimic the versatility of the native ECM in function, composition and dynamic properties and some of which are designed to improve cartilage regeneration. This review systematically investigates the following: the characteristics of cartilage ECM, repair mechanisms, decellularization method, source of ECM, and various ECM-based cartilage repair methods. In addition, the future development of ECM-based biomaterials is hypothesized.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yixin Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xuan Long
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingling Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Ji Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xiaobing Shi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Runqi Xie
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Bi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Fangyuan Yu
- Senior Department of Orthopedics, Forth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Yu Yang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| |
Collapse
|
5
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
6
|
Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, Ki-Wai Ho K, Qin L. Innovative Tissue-Engineered Strategies for Osteochondral Defect Repair and Regeneration: Current Progress and Challenges. Adv Healthc Mater 2020; 9:e2001008. [PMID: 33103381 DOI: 10.1002/adhm.202001008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/19/2020] [Indexed: 12/20/2022]
Abstract
Clinical treatments for the repair of osteochondral defects (OCD) are merely palliative, not completely curative, and thus enormously unfulfilled challenges. With the in-depth studies of biology, medicine, materials, and engineering technology, the conception of OCD repair and regeneration should be renewed. During the past decades, many innovative tissue-engineered approaches for repairing and regenerating damaged osteochondral units have been widely explored. Various scaffold-free and scaffold-based strategies, such as monophasic, biphasic, and currently fabricated multiphasic and gradient architectures have been proposed and evaluated. Meanwhile, progenitor cells and tissue-specific cells have also been intensively investigated in vivo as well as ex vivo. Concerning bioactive factors and drugs, they have been combined with scaffolds and/or living cells, and even released in a spatiotemporally controlled manner. Although tremendous progress has been achieved, further research and development (R&D) is needed to convert preclinical outcomes into clinical applications. Here, the osteochondral unit structure, its defect classifications, and diagnosis are summarized. Commonly used clinical reparative techniques, tissue-engineered strategies, emerging 3D-bioprinting technologies, and the status of their clinical applications are discussed. Existing challenges to translation are also discussed and potential solutions for future R&D directions are proposed.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Van Osch Gjvm
- Department of Orthopedics and Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, 2600 AA, The Netherlands
| | - Jos Malda
- Department of Orthopaedics of University Medical Center Utrecht, and Department of Clinical Sciences of Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, CH 7270, Switzerland
| | - Kevin Ki-Wai Ho
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518000, China
| |
Collapse
|
7
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
8
|
Erickson AE, Sun J, Lan Levengood SK, Swanson S, Chang FC, Tsao CT, Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevices 2019; 21:34. [PMID: 30906951 DOI: 10.1007/s10544-019-0373-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prolonged osteochondral tissue damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. Here, a bilayer scaffold for osteochondral tissue regeneration was fabricated using thermally-induced phase separation (TIPS). Two distinct polymer solutions were layered before TIPS, and the resulting porous, bilayer scaffold was characterized by seamless interfacial integration and a mechanical stiffness gradient reflecting the native osteochondral microenvironment. Chitosan is a critical component of both scaffold layers to facilitate cell attachment and the formation of polyelectrolyte complexes with other biologically relevant natural polymers. The articular cartilage region was optimized for hyaluronic acid content and stiffness, while the subchondral bone region was defined by higher stiffness and osteoconductive hydroxyapatite content. Following co-culture with chondrocyte-like (SW-1353 or mesenchymal stem cells) and osteoblast-like cells (MG63), cell proliferation and migration to the interface along with increased gene expression associated with relevant markers of osteogenesis and chondrogenesis indicates the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Ariane E Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jialu Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Sheeny K Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Shawn Swanson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ching T Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
10
|
Rojo L. Combination of Polymeric Supports and Drug Delivery Systems for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:301-313. [DOI: 10.1007/978-3-319-76735-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|