1
|
Brizuela L, Buchet R, Bougault C, Mebarek S. Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. Int J Mol Sci 2025; 26:2896. [PMID: 40243480 PMCID: PMC11988852 DOI: 10.3390/ijms26072896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Links between cathepsin K and the pathophysiology of osteoarthritis (OA) can be established, not least because of the overabundance of cathepsin K in the serum of OA patients and the upregulation of cathepsin K in degraded cartilage in animal models of OA. Chondrocytes, chondroclasts, or osteoclasts contribute to the accumulated cathepsin K at the diseased osteochondral junction. After a general presentation of OA and cartilage physiology, as well as its degradation processes, we describe the function of cathepsin K and its effect on cartilage degradation via type II collagen cleavage. An overview of the most promising cathepsin K inhibitors is then presented, together with their in vitro effects. Although intensive research on cathepsin K inhibitors initially focused on bone resorption, there is growing interest in the potential of these drugs to prevent cartilage degradation. In this review, we summarize the pre-clinical and clinical trials that support the use of cathepsin K inhibitors in the treatment of OA. To date, no molecules of this type are commercially available, although a few have undergone clinical trials, but we believe that the development of cathepsin K inhibitors could broaden the therapeutic arsenal for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | - Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Université Lyon 1, UMR CNRS 5246, 69 622 Villeurbanne Cedex, France
| |
Collapse
|
2
|
Moon DO. Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals. Molecules 2024; 30:91. [PMID: 39795149 PMCID: PMC11721202 DOI: 10.3390/molecules30010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects. Key phytochemicals, including AC-5-1, Cycloaltilisin 6, Cycloaltilisin 7, Nicolaioidesin C, and Panduratin A, were examined for their inhibitory activities against cathepsin K. While these compounds exhibit varying IC50 values, their docking studies revealed significant interactions within Cathepsin K's active site, particularly involving critical residues such as Cys25 and His162. However, challenges such as lower potency compared to synthetic inhibitors and limited in vivo studies underscore the need for structural optimization and comprehensive preclinical evaluations. This review discusses biological insights, current limitations, and future strategies for advancing phytochemical-based inhibitors toward clinical applications in managing Cathepsin K-associated diseases.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Kimura S, Miyake N, Ozasa S, Ueno H, Ohtani Y, Takaoka Y, Nishino I. Increase in cathepsin K gene expression in Duchenne muscular dystrophy skeletal muscle. Neuropathology 2024; 44:411-421. [PMID: 39014877 DOI: 10.1111/neup.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Dystrophinopathy is caused by alterations in the dystrophin gene. The severe phenotype, Duchenne muscular dystrophy (DMD), is caused by a lack of dystrophin in skeletal muscles, resulting in necrosis and regenerating fibers, inflammatory cells, and muscle fibrosis. Progressive muscle weakness is a characteristic finding of this condition. Here, we encountered a rare case of a 10-year-old patient with asymptomatic dystrophinopathy with no dystrophin expression and investigated the reason for the absence of muscle weakness to obtain therapeutic insights for DMD. Using RNA-seq analysis, gene expression in skeletal muscles was compared among patients with asymptomatic dystrophinopathy, three patients with typical DMD, and two patients without dystrophinopathy who were leading normal daily lives. Cathepsin K (CTSK), myosin heavy chain 3 (MYH3), and nodal modulator 3-like genes exhibited a >8-fold change, whereas crystallin mu gene (CRYM) showed a <1/8-fold change in patients with typical DMD compared with their expression in the patient with asymptomatic dystrophinopathy. Additionally, CTSK and MYH3 expression exhibited a >16-fold change (P < 0.01), whereas CRYM expression showed a <1/16-fold change (P < 0.01) in patients with typical DMD compared with their expression in those without dystrophinopathy. CTSK plays an essential role in skeletal muscle loss, fibrosis, and inflammation in response to muscles injected with cardiotoxin, one of the most common reagents that induce muscle injury. Increased CTSK expression is associated with muscle injury or necrosis in patients with DMD. The lack of muscle weakness in the patient with asymptomatic dystrophinopathy might be attributed to the low CTSK expression in the muscles. To the best of our knowledge, this is the first report to demonstrate that CTSK expression was significantly higher in the skeletal muscles of patients with DMD with a typical phenotype than in those without dystrophinopathy.
Collapse
Affiliation(s)
- Shigemi Kimura
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroe Ueno
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
| | - Yoshinobu Ohtani
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
| | - Yutaka Takaoka
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Health Sciences, Kobe Tokiwa University, Kobe, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
4
|
Cardoso Prado Martins F, Dos Reis Rocho F, Bonatto V, Jatai Batista PH, Lameira J, Leitão A, Montanari CA. Novel selective proline-based peptidomimetics for human cathepsin K inhibition. Bioorg Med Chem Lett 2024; 110:129887. [PMID: 39002936 DOI: 10.1016/j.bmcl.2024.129887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.
Collapse
Affiliation(s)
- Felipe Cardoso Prado Martins
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil
| | - Fernanda Dos Reis Rocho
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil
| | - Vinícius Bonatto
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil; Institute of Biological Science, Federal University of Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos/SP, Brazil.
| |
Collapse
|
5
|
Chapman JH, Ghosh D, Attari S, Ude CC, Laurencin CT. Animal Models of Osteoarthritis: Updated Models and Outcome Measures 2016-2023. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:127-146. [PMID: 38983776 PMCID: PMC11233113 DOI: 10.1007/s40883-023-00309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis. Since our last review on animal models of osteoarthritis in 2016, there have been exciting updates in OA research and models. The main purpose of this review is to update the latest animal models and key features of studies in OA research. Method We used our existing classification method and screened articles in PubMed and bibliographic search for animal OA models between 2016 and 2023. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Recent studies were analyzed and classified. We also identified ex vivo models as an area of ongoing research. Each animal model offers its own benefit in the study of OA and there are a full range of outcome measures that can be assessed. Despite the vast number of models, each has its drawbacks that have limited translating approved therapies for human use. Conclusion Depending on the outcome measures and objective of the study, researchers should pick the best model for their work. There have been several exciting studies since 2016 that have taken advantage of regenerative engineering techniques to develop therapies and better understand OA. Lay Summary Osteoarthritis (OA) is a chronic debilitating disease without any cure that affects mostly the knee and hip joints and often results in surgical joint replacement. Cartilage protects the joint from mechanical forces and degrades with age or in response to injury. The many contributing causes of OA are still being investigated, and animals are used for preclinical research and to test potential new treatments. A single consensus OA animal model for preclinical studies is non-existent. In this article, we review the many animal models for OA and provide a much-needed update on studies and model development since 2016.
Collapse
Affiliation(s)
- James H. Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Seyyedmorteza Attari
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
6
|
Parwez S, Chaurasia A, Mahapatra PP, Ahmed S, Siddiqi MI. Integrated machine learning-based virtual screening and biological evaluation for identification of potential inhibitors against cathepsin K. Mol Divers 2024:10.1007/s11030-024-10845-5. [PMID: 38662177 DOI: 10.1007/s11030-024-10845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Cathepsin K is a type of cysteine proteinase that is primarily expressed in osteoclasts and has a key role in the breakdown of bone matrix protein during bone resorption. Many studies suggest that the deficiency of cathepsin K is concomitant with a suppression of osteoclast functioning, therefore rendering the resorptive properties of cathepsin K the most prominent target for osteoporosis. This innovative work has identified a novel anti-osteoporotic agent against Cathepsin K by using a comparison of machine learning and deep learning-based virtual screening followed by their biological evaluation. Out of ten shortlisted compounds, five of the compounds (JFD02945, JFD02944, RJC01981, KM08968 and SB01934) exhibit more than 50% inhibition of the Cathepsin K activity at 0.1 μM concentration and are considered to have a promising inhibitory effect against Cathepsin K. The comprehensive docking, MD simulation, and MM/PBSA investigations affirm the stable and effective interaction of these compounds with Cathepsin K to inhibit its function. Furthermore, the compounds RJC01981, KM08968 and SB01934 are represented to have promising anti-osteoporotic properties for the management of osteoporosis owing to their significantly well predicted ADMET properties.
Collapse
Affiliation(s)
- Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Animesh Chaurasia
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pinaki Parsad Mahapatra
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Imanpour A, Kolahi Azar H, Makarem D, Nematollahi Z, Nahavandi R, Rostami M, Beheshtizadeh N. In silico engineering and simulation of RNA interferences nanoplatforms for osteoporosis treating and bone healing promoting. Sci Rep 2023; 13:18185. [PMID: 37875547 PMCID: PMC10598124 DOI: 10.1038/s41598-023-45183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoporosis is a bone condition characterized by reduced bone mineral density (BMD), poor bone microarchitecture/mineralization, and/or diminished bone strength. This asymptomatic disorder typically goes untreated until it presents as a low-trauma fracture of the hip, spine, proximal humerus, pelvis, and/or wrist, requiring surgery. Utilizing RNA interference (RNAi) may be accomplished in a number of ways, one of which is by the use of very tiny RNA molecules called microRNAs (miRNAs) and small interfering RNAs (siRNAs). Several kinds of antagomirs and siRNAs are now being developed to prevent the detrimental effects of miRNAs. The goal of this study is to find new antagonists for miRNAs and siRNAs that target multiple genes in order to reduce osteoporosis and promote bone repair. Also, choosing the optimum nanocarriers to deliver these RNAis appropriately to the body could lighten up the research road. In this context, we employed gene ontology analysis to search across multiple datasets. Following data analysis, a systems biology approach was used to process it. A molecular dynamics (MD) simulation was used to explore the possibility of incorporating the suggested siRNAs and miRNA antagonists into polymeric bioresponsive nanocarriers for delivery purposes. Among the three nanocarriers tested [polyethylene glycol (PEG), polyethylenimine (PEI), and PEG-PEI copolymer], MD simulations show that the integration of PEG-PEI with has-mIR-146a-5p is the most stable (total energy = -372.84 kJ/mol, Gyration radius = 2.1084 nm), whereas PEI is an appropriate delivery carrier for has-mIR-7155. The findings of the systems biology and MD simulations indicate that the proposed RNAis might be given through bioresponsive nanocarriers to accelerate bone repair and osteoporosis treatment.
Collapse
Affiliation(s)
- Aylar Imanpour
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Politecnica de Madrid, Madrid, Spain
| | - Zeinab Nematollahi
- UCL Department of Nanotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Reza Nahavandi
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Mohammadreza Rostami
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bonatto V, Lameiro RF, Rocho FR, Lameira J, Leitão A, Montanari CA. Nitriles: an attractive approach to the development of covalent inhibitors. RSC Med Chem 2023; 14:201-217. [PMID: 36846367 PMCID: PMC9945868 DOI: 10.1039/d2md00204c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Nitriles have broad applications in medicinal chemistry, with more than 60 small molecule drugs on the market containing the cyano functional group. In addition to the well-known noncovalent interactions that nitriles can perform with macromolecular targets, they are also known to improve drug candidates' pharmacokinetic profiles. Moreover, the cyano group can be used as an electrophilic warhead to covalently bind an inhibitor to a target of interest, forming a covalent adduct, a strategy that can present benefits over noncovalent inhibitors. This approach has gained much notoriety in recent years, mainly with diabetes and COVID-19-approved drugs. Nevertheless, the application of nitriles in covalent ligands is not restricted to it being the reactive center, as it can also be employed to convert irreversible inhibitors into reversible ones, a promising strategy for kinase inhibition and protein degradation. In this review, we introduce and discuss the roles of the cyano group in covalent inhibitors, how to tune its reactivity and the possibility of achieving selectivity only by replacing the warhead. Finally, we provide an overview of nitrile-based covalent compounds in approved drugs and inhibitors recently described in the literature.
Collapse
Affiliation(s)
- Vinícius Bonatto
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Fernanda R Rocho
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
- Institute of Biological Science, Federal University of Pará Rua Augusto Correa S/N Belém PA Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| |
Collapse
|
9
|
Mijanović O, Jakovleva A, Branković A, Zdravkova K, Pualic M, Belozerskaya TA, Nikitkina AI, Parodi A, Zamyatnin AA. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int J Mol Sci 2022; 23:ijms232213762. [PMID: 36430239 PMCID: PMC9698382 DOI: 10.3390/ijms232213762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.
Collapse
Affiliation(s)
- Olja Mijanović
- Dia-M, LCC, 7 b.3 Magadanskaya Str., 129345 Moscow, Russia
- The Human Pathology Department, Sechenov First Moscow State University, 119991 Moscow, Russia
| | | | - Ana Branković
- Department of Forensics Engineering, University of Criminal Investigation and Police Studies, Cara Dusana 196, 11000 Belgrade, Serbia
| | - Kristina Zdravkova
- AD Alkaloid Skopje, Boulevar Alexander the Great 12, 1000 Skopje, North Macedonia
| | - Milena Pualic
- Institute Cardiovascular Diseases Dedinje, Heroja Milana Tepica 1, 11000 Belgrade, Serbia
| | - Tatiana A. Belozerskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Angelina I. Nikitkina
- ArhiMed Clinique for New Medical Technologies, Vavilova St. 68/2, 119261 Moscow, Russia
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| |
Collapse
|