1
|
Shokouhi Asl AS, Sayahi MH, Hashempur MH, Irajie C, Alaeddini AH, Ghafouri SN, Noori M, Dastyafteh N, Mottaghipisheh J, Asadi M, Larijani B, Mahdavi M, Iraji A. Cinnamic acid conjugated with triazole acetamides as anti-Alzheimer and anti-melanogenesis candidates: an in vitro and in silico study. Sci Rep 2025; 15:655. [PMID: 39754023 PMCID: PMC11698978 DOI: 10.1038/s41598-024-83020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including 1H-NMR, 13C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes. Among synthesize derivative compound 3-(4-((1-(2-((2,4-dichlorophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxyphenyl)acrylic acid (10j) exhibited the highest activity against BChE with an IC50 value of 11.99 ± 0.53 µM. Derivative 3-(3-methoxy-4-((1-(2-oxo-2-(p-tolylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (10d), bearing a 4-CH3 group, was identified as the most potent AChE inhibitor. In terms of tyrosinase inhibition, 3-(3-methoxy-4-((1-(2-((2-methyl-4-nitrophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (compound 10n), demonstrated 44.87% inhibition at a concentration of 40 µM. Additionally, a kinetic study of compound 10j which 2,4-dichlorophenyl substituents against BChE revealed a mixed-type inhibition pattern. Furthermore, molecular docking and molecular dynamic studies of compound 10j were conducted to thoroughly evaluate its mode of action within the BChE active site.
Collapse
Affiliation(s)
- Amir Shervin Shokouhi Asl
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 7050, SE-750 07, Uppsala, Sweden
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Pont C, Sampietro A, Pérez-Areales FJ, Cristiano N, Albalat A, Pérez B, Bartolini M, De Simone A, Andrisano V, Barenys M, Teixidó E, Sabaté R, Loza MI, Brea J, Muñoz-Torrero D. Stepwise Structural Simplification of the Dihydroxyanthraquinone Moiety of a Multitarget Rhein-Based Anti-Alzheimer Lead to Improve Drug Metabolism and Pharmacokinetic Properties. Pharmaceutics 2024; 16:982. [PMID: 39204327 PMCID: PMC11359831 DOI: 10.3390/pharmaceutics16080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer's disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful to hit targets with large binding cavities, but at the expense of suffering from suboptimal physicochemical/pharmacokinetic properties. Molecular size reduction by removal of superfluous structural elements while retaining the key pharmacophoric motifs may represent a compromise solution to achieve both multitargeting and favorable physicochemical/PK properties. Here, we report the stepwise structural simplification of the dihydroxyanthraquinone moiety of a rhein-huprine hybrid lead by hydroxy group removal-ring contraction-ring opening-ring removal, which has led to new analogs that retain or surpass the potency of the lead on its multiple AD targets while exhibiting more favorable drug metabolism and pharmacokinetic (DMPK) properties and safety profile. In particular, the most simplified acetophenone analog displays dual nanomolar inhibition of human acetylcholinesterase and butyrylcholinesterase (IC50 = 6 nM and 13 nM, respectively), moderately potent inhibition of human BACE-1 (48% inhibition at 15 µM) and Aβ42 and tau aggregation (73% and 68% inhibition, respectively, at 10 µM), favorable in vitro brain permeation, higher aqueous solubility (18 µM) and plasma stability (100/96/86% remaining in human/mouse/rat plasma after 6 h incubation), and lower acute toxicity in a model organism (zebrafish embryos; LC50 >> 100 µM) than the initial lead, thereby confirming the successful lead optimization by structural simplification.
Collapse
Affiliation(s)
- Caterina Pont
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Anna Sampietro
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
| | - F Javier Pérez-Areales
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
| | - Nunzia Cristiano
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Agustí Albalat
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Marta Barenys
- Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Elisabet Teixidó
- Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - M Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
| |
Collapse
|
3
|
Shamim T, Asif HM, Abida Ejaz S, Hussain Z, Wani TA, Sumreen L, Abdullah M, Ahmed Z, Iqbal J, Kim SJ, Shah MK. Investigations of Limeum Indicum Plant for Diabetes Mellitus and Alzheimer's Disease Dual Therapy: Phytochemical, GC-MS Chemical Profiling, Enzyme Inhibition, Molecular Docking and In-Vivo Studies. Chem Biodivers 2024; 21:e202301858. [PMID: 38608202 DOI: 10.1002/cbdv.202301858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, β-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 μg/mL), methanol extract against β-glucosidase (IC50=91.12±0.07 μg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 μg/mL), ethanol extract against BChE (28.41±0.01 μg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 μg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 μg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.
Collapse
Affiliation(s)
- Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2452, 11451, Riyadh, Saudi Arabia
| | - Laila Sumreen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, 32588, Gongju, South Korea
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, 29220, Dera Ismail Khan, Pakistan
| |
Collapse
|
4
|
Jiang Y, Cui H, Yu Q. A novel near-infrared fluorescent probe for high-sensitivity detection of butyrylcholinesterase in various pathological states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123801. [PMID: 38142494 DOI: 10.1016/j.saa.2023.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Butyrylcholinesterase (BChE) is a crucial hydrolytic enzyme predominantly synthesized in the liver, playing a significant role in conditions like liver disorders, diabetes, Alzheimer's disease, and fat metabolism regulation. This study aims to address the current limitations in visualizing BChE activity in diseases at various states by introducing an ultra-sensitive near-infrared fluorescent probe, FDCM-BChE. The probe was engineered to have several properties, such as a large Stokes shift, rapid response time, high stability, excellent selectivity, and low detection limits. We validated the efficacy of FDCM-BChE in quantifying BChE activity in human serum and leveraged its low cytotoxicity for cellular imaging. The study revealed the downregulation of BChE activity in liver cancer and hepatic injury and the upregulation in diabetes. Thus, FDCM-BChE shows promise as a tool for specific applications, providing insights into diseases associated with BChE activity.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haizhen Cui
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
5
|
Kumar H, Datusalia AK, Khatik GL. Virtual screening of acetylcholinesterase inhibitors through pharmacophore-based 3D-QSAR modeling, ADMET, molecular docking, and MD simulation studies. In Silico Pharmacol 2024; 12:13. [PMID: 38370859 PMCID: PMC10873251 DOI: 10.1007/s40203-024-00189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024] Open
Abstract
Alzheimer's disease (AD) is a leading cause of dementia in elderly patients. The pathophysiology of AD includes various pathways, such as the degradation of acetylcholine, amyloid-beta deposition, neurofibrillary tangle formation, and neuroinflammation. Many studies showed that targeting acetylcholinesterase enzyme (AChE) to improve acetylcholine can be an effective option to treat AD. In the current work, we employed a 3D QSAR-based approach to generate a pharmacophore to screen a chemical library of compounds that may inhibit AChE. Data from experimental studies were collected and used for the generation of pharmacophores. More than 1 million compounds were screened, and further drug-like properties were determined via in-silico ADMET studies. Techniques like molecular docking and molecular dynamics simulation were performed to analyze the binding of novel AChE inhibitors. A novel AChE inhibitor ligand-1 was identified as best with a docking score of -13.560 kcal/mol with RMSD of 1.71 Å during a 100 ns MD run. Further biological studies can give an insight into the potential of ligand-1 as a therapeutic agent for AD. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00189-1.
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh 226002 India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh 226002 India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh 226002 India
| |
Collapse
|
6
|
Shoukat S, Zia MA, Uzair M, Attia KA, Abushady AM, Fiaz S, Ali S, Yang SH, Ali GM. Bacopa monnieri: A promising herbal approach for neurodegenerative disease treatment supported by in silico and in vitro research. Heliyon 2023; 9:e21161. [PMID: 37954293 PMCID: PMC10637926 DOI: 10.1016/j.heliyon.2023.e21161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Neurodegenerative disorders, caused by progressive neuron loss, are a global health issue. Among the various factors implicated in their pathogenesis, dysregulation of acetylcholinesterase activity has been recognized as a key contributor. Acetylcholinesterase breaks down the neurotransmitter acetylcholine, important for neural transmission. Evaluating phyto-compounds from Bacopa monnieri Linn. through in vitro and in silico analysis may expand their role as alternative therapeutic agents by modulating the function of acetylcholinesterase and complementing existing treatments. To accomplish this objective, chemical structures of phyto-compounds were retrieved from PubChem database and subjected to in silico and in vitro approaches. Virtual screening was performed through molecular docking and molecular dynamic simulation resulting in four top hit compounds including quercetin, apigenin, wogonin, and bacopaside X (novel lead compound for acetylcholinesterase inhibitor) with least binding score. Further, dose dependent acetylcholinesterase inhibition biochemical assay depicted that bacopaside X, apigenin, quercetin, and wogonin exhibited strong potential against acetylcholinesterase with IC50 values of 12.78 μM, 13.83 μM, 12.73 μM and 15.48 μM respectively, in comparison with the donepezil (IC50: 0.0204 μM). The in silico and in vitro research suggests that B. monnieri phyto-compounds have the potential to modulate molecular targets associated with neurodegenerative diseases and have a role in neuroprotection.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advance Studies in Agriculture Research, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, 22620 Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | | |
Collapse
|
7
|
Ankul SS, Chandran L, Anuragh S, Kaliappan I, Rushendran R, Vellapandian C. A systematic review of the neuropathology and memory decline induced by monosodium glutamate in the Alzheimer's disease-like animal model. Front Pharmacol 2023; 14:1283440. [PMID: 37942488 PMCID: PMC10627830 DOI: 10.3389/fphar.2023.1283440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
This systematic review analyzes monosodium glutamate (MSG) in the Alzheimer's disease-like condition to enhance translational research. Our review seeks to understand how MSG affects the brain and causes degenerative disorders. Due to significant preclinical data linking glutamate toxicity to Alzheimer's disease and the lack of a comprehensive review or meta-analysis, we initiated a study on MSG's potential link. We searched PubMed, ScienceDirect, ProQuest, DOAJ, and Scopus for animal research and English language papers without time constraints. This study used the PRISMA-P framework and PICO technique to collect population, intervention or exposure, comparison, and result data. It was registered in PROSPERO as CRD42022371502. MSG affected mice's exploratory behaviors and short-term working memory. The brain, hippocampus, and cerebellar tissue demonstrated neuronal injury-related histological and histomorphometric changes. A total of 70% of MSG-treated mice had poor nesting behavior. The treated mice also had more hyperphosphorylated tau protein in their cortical and hippocampus neurons. Glutamate and glutamine levels in the brain increased with MSG, and dose-dependent mixed horizontal locomotor, grooming, and anxiety responses reduced. MSG treatment significantly decreased phospho-CREB protein levels, supporting the idea that neurons were harmed, despite the increased CREB mRNA expression. High MSG doses drastically lower brain tissue and serum serotonin levels. In conclusion, MSG showed AD-like pathology, neuronal atrophy, and short-term memory impairment. Further research with a longer time span and deeper behavioral characterization is needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42022371502].
Collapse
Affiliation(s)
- Singh S. Ankul
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, Tamil Nadu, India
| | - Singh Anuragh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hindustan Institute of Technology and Science, Tamil Nadu, India
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| |
Collapse
|
8
|
Angelova VT, Georgiev B, Pencheva T, Pajeva I, Rangelov M, Todorova N, Zheleva-Dimitrova D, Kalcheva-Yovkova E, Valkova IV, Vassilev N, Mihaylova R, Stefanova D, Petrov B, Voynikov Y, Tzankova V. Design, Synthesis, In Silico Studies and In Vitro Evaluation of New Indole- and/or Donepezil-like Hybrids as Multitarget-Directed Agents for Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1194. [PMID: 37765003 PMCID: PMC10534827 DOI: 10.3390/ph16091194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone (3a-r) or sulfonyl hydrazone (5a-l) fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds (3c and 3d) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system. Compound 3n, possessing two indole scaffolds, showed the highest activity against butyrylcholinesterase (BChE) and a high selectivity index (SI = 47.34), as well as a pronounced protective effect in H2O2-induced oxidative stress in SH-SY5Y cells. Moreover, compounds 3c, 3d, and 3n showed low neurotoxicity against malignant neuroblastoma cell lines of human (SH-SY5Y) and murine (Neuro-2a) origin, as well as normal murine fibroblast cells (CCL-1) that indicate the in vitro biocompatibility of the experimental compounds. Furthermore, compounds 3c, 3d, and 3n were capable of penetrating the blood-brain barrier (BBB) in the experimental PAMPA-BBB study. The molecular docking showed that compound 3c could act as a ligand to both MT1 and MT2 receptors, as well as to AchE and BchE enzymes. Taken together, those results outline compounds 3c, 3d, and 3n as promising prototypes in the search of innovative compounds for the treatment of AD-associated neurodegeneration with oxidative stress. This study demonstrates that hydrazone derivatives with melatonin and donepezil are appropriate for further development of new AChE/BChE inhibitory agents.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | | | - Elena Kalcheva-Yovkova
- Faculty of Computer Systems and Techologies, Technical University–Sofia, 1000 Sofia, Bulgaria;
| | - Iva V. Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Boris Petrov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| |
Collapse
|
9
|
Khan SA, Leonel Javeres MN, Abbas Shah ST, Bibi N, Muneer Z, Hussain S, Nepovimova E, Kuca K, Nurulain SM. Dysregulation of butyrylcholinesterase, BCHE gene SNP rs1803274, and pro-inflammatory cytokines in occupational workers. ENVIRONMENTAL RESEARCH 2023; 220:115195. [PMID: 36592809 DOI: 10.1016/j.envres.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND People in different occupations are exposed to a variety of xenobiotics which affect the health and physiological processes of the body. Butyrylcholinesterase (BChE), has been reported to play neuronal and non-neuronal roles, though its exact function is yet to be established. This study aimed to find the status and role of BChE in seven different occupational groups; gasoline fillers, auto-mechanics, carpenters, textile shop workers, furniture shop workers, electricians, and office workers. METHODS A total of 400 samples were screened. BChE activity was determined by Worek et al. method based on Ellman's principle. Pro-inflammatory cytokines were determined by ELISA. Genotypic analysis of the K-variant of BCHE gene SNP was carried out by standard molecular methods. Among seven groups, office workers were taken as a control to compare the results with all other occupational groups. RESULTS The results revealed a significant decrease in BChE activity in gasoline fillers (79.52%) followed by carpenters (73.49%), auto mechanics (39.76%), textile shop workers (18.07%), electricians (10.84%), and furniture shop workers (7.23%). TNF-α, IL-6, and IL1-β were elevated in all groups. IL-6 and IL1-β in gasoline fillers, and electricians were not statistically significantly increased. Binomial regression to determine the odd ratio was found to be significant (p < 0.05) in all groups. However, correlation (Pearson) did not reveal significance between different biochemical parameters. Genotypic analysis of the K-variant SNP of the BCHE gene showed a significant association with occupational groups when compared with control which indicates a possible association with xenobiotics exposure and the physiological role of K-variant in understudied occupational groups. CONCLUSION The study concluded that BChE and its gene SNP rs 1803274 and proinflammatory cytokines significantly dysregulates under the exposure to cumulative multiple xenobiotics in different occupational groups which may lead to pathophysiological conditions.
Collapse
Affiliation(s)
- Sosan Andleeb Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | | | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Sabir Hussain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec Kralove, Czech Republic.
| | - Syed Muhammad Nurulain
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road Tarlai, Islamabad, 45550, Pakistan.
| |
Collapse
|
10
|
Pseudo-irreversible butyrylcholinesterase inhibitors: Structure-activity relationships, computational and crystallographic study of the N-dialkyl O-arylcarbamate warhead. Eur J Med Chem 2023; 247:115048. [PMID: 36586299 DOI: 10.1016/j.ejmech.2022.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.
Collapse
|
11
|
Rastegari A, Manayi A, Rezakazemi M, Eftekhari M, Khanavi M, Akbarzadeh T, Saeedi M. Phytochemical analysis and anticholinesterase activity of aril of Myristica fragrans Houtt. BMC Chem 2022; 16:106. [PMID: 36437466 PMCID: PMC9703800 DOI: 10.1186/s13065-022-00897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, the ethyl acetate fraction of Myristica fragrans Houtt. was investigated for its in vitro anticholinesterase activity as well as neuroprotectivity against H2O2-induced cell death in PC12 neuronal cells and the ability to chelate bio-metals (Zn2+, Fe2+, and Cu2+). The fraction was inactive toward acetylcholinesterase (AChE); however, it inhibited the butyrylcholinesterase (BChE) with IC50 value of 68.16 µg/mL, compared with donepezil as the reference drug (IC50 = 1.97 µg/mL) via Ellman's method. It also showed good percentage of neuroprotection (86.28% at 100 µg/mL) against H2O2-induced neurotoxicity and moderate metal chelating ability toward Zn2+, Fe2+, and Cu2+. The phytochemical study led to isolation and identification of malabaricone A (1), malabaricone C (2), 4-(4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl)benzene-1,2-diol (3), nectandrin B (4), macelignan (5), and 4-(4-(benzo[d][1,3]dioxol-5-yl)-1-methoxy-2,3-dimethylbutyl)-2-methoxyphenol (6) which were assayed for their cholinesterase (ChE) inhibitory activity. Compounds 1 and 3 were not previously reported for M. fragrans. Among isolated compounds, compound 2 showed the best activity toward both AChE and BChE with IC50 values of 25.02 and 22.36 μM, respectively, compared with donepezil (0.07 and 4.73 μM, respectively).
Collapse
Affiliation(s)
- Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rezakazemi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chaudhry F, Munir R, Ashraf M, Mehr-un-Nisa, Huma R, Malik N, Hussain S, Ali Munawar M, Ain Khan M. Exploring Facile Synthesis and Cholinesterase Inhibiting Potential of Heteroaryl Substituted Imidazole Derivatives for the Treatment of Alzheimer’s Disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|