1
|
Liu K, Zhao S, Li J, Zheng Y, Wu H, Kong J, Shen Z. Knowledge mapping and research hotspots of immunotherapy in renal cell carcinoma: A text-mining study from 2002 to 2021. Front Immunol 2022; 13:969217. [PMID: 35967367 PMCID: PMC9367473 DOI: 10.3389/fimmu.2022.969217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most lethal urological malignancies, and because early-stage RCC is asymptomatic, many patients present metastatic diseases at first diagnosis. With the development of immunotherapy, the treatment of RCC has entered a new stage and has made a series of progress. This study mainly outlines the knowledge map and detects the potential research hotspots by using bibliometric analysis. METHODS Publications concerning RCC immunotherapy from 2002 to 2021 in the Web of Science Core Collection were collected. Visualization and statistical analysis were mainly performed by freeware tools VOSviewer, CiteSpace, R software, and Microsoft Office Excel 2019. RESULTS A total of 3,432 papers were collected in this study, and the annual number of papers and citations showed a steady growth trend. The United States is the leading country with the most high-quality publications and is also the country with the most international cooperation. The University of Texas MD Anderson Cancer Center is the most productive organization. The Journal of Clinical Oncology is the highest co-cited journal, and Brian I. Rini is both the most prolific author and the author with the largest centrality. The current research hotspots may be focused on "immune checkpoint inhibitors (ICIs)," "PD-1," and "mammalian target of rapamycin." CONCLUSION Immunotherapy has a bright future in the field of RCC treatment, among which ICIs are one of the most important research hotspots. The main future research directions of ICI-based immunotherapy may focus on combination therapy, ICI monotherapy, and the development of new predictive biomarkers.
Collapse
Affiliation(s)
- Kun Liu
- Department of Urology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Seling Zhao
- Department of Urology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Jian Li
- Department of Urology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Yikun Zheng
- Department of Urology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Zefeng Shen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Gorgulho CM, Krishnamurthy A, Lanzi A, Galon J, Housseau F, Kaneno R, Lotze MT. Gutting it Out: Developing Effective Immunotherapies for Patients With Colorectal Cancer. J Immunother 2021; 44:49-62. [PMID: 33416261 PMCID: PMC8092416 DOI: 10.1097/cji.0000000000000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Risk factors for colorectal cancer (CRC) include proinflammatory diets, sedentary habits, and obesity, in addition to genetic syndromes that predispose individuals to this disease. Current treatment relies on surgical excision and cytotoxic chemotherapies. There has been a renewed interest in immunotherapy as a treatment option for CRC given the success in melanoma and microsatellite instable (MSI) CRC. Immunotherapy with checkpoint inhibitors only plays a role in the 4%-6% of patients with MSIhigh tumors and even within this subpopulation, response rates can vary from 30% to 50%. Most patients with CRC do not respond to this modality of treatment, even though colorectal tumors are frequently infiltrated with T cells. Tumor cells limit apoptosis and survive following intensive chemotherapy leading to drug resistance and induction of autophagy. Pharmacological or molecular inhibition of autophagy improves the efficacy of cytotoxic chemotherapy in murine models. The microbiome clearly plays an etiologic role, in some or most colon tumors, realized by elegant findings in murine models and now investigated in human clinical trials. Recent results have suggested that cancer vaccines may be beneficial, perhaps best as preventive strategies. The search for therapies that can be combined with current approaches to increase their efficacy, and new knowledge of the biology of CRC are pivotal to improve the care of patients suffering from this disease. Here, we review the basic immunobiology of CRC, current "state-of-the-art" immunotherapies and define those areas with greatest therapeutic promise for the future.
Collapse
Affiliation(s)
- Carolina Mendonça Gorgulho
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Department of Pathology, School of Medicine of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- DAMP Laboratory, Department of Surgery, University of Pittsburgh, Pittsburgh - PA, USA
| | | | - Anastasia Lanzi
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Franck Housseau
- Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins School of Medicine, CRB-I Room 4M59, 1650 Orleans Street, Baltimore, MD, USA
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Department of Pathology, School of Medicine of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Michael T. Lotze
- DAMP Laboratory, Department of Surgery, University of Pittsburgh, Pittsburgh - PA, USA
| |
Collapse
|
3
|
Kufka R, Rennert R, Kaluđerović GN, Weber L, Richter W, Wessjohann LA. Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells. Beilstein J Org Chem 2019; 15:96-105. [PMID: 30680044 PMCID: PMC6334802 DOI: 10.3762/bjoc.15.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.
Collapse
Affiliation(s)
- Rainer Kufka
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.,OntoChem GmbH, Blücherstr. 24, D-06120 Halle (Saale), Germany
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Lutz Weber
- OntoChem GmbH, Blücherstr. 24, D-06120 Halle (Saale), Germany
| | | | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Really interesting new gene finger protein 121 is a tumor suppressor of renal cell carcinoma. Gene 2018; 676:322-328. [DOI: 10.1016/j.gene.2018.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022]
|
5
|
Flynn M, Pickering L, Larkin J, Turajlic S. Immune-checkpoint inhibitors in melanoma and kidney cancer: from sequencing to rational selection. Ther Adv Med Oncol 2018; 10:1758835918777427. [PMID: 29977349 PMCID: PMC6024333 DOI: 10.1177/1758835918777427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Immune-checkpoint inhibitors (ICPIs), including antibodies against cytotoxic T-lymphocyte associated antigen 4 and programmed cell death protein 1, have been shown to induce durable complete responses in a proportion of patients in the first-line and refractory setting in advanced melanoma and renal cell carcinoma. In fact, there are several lines of both targeted agents and ICPI that are now feasible treatment options. However, survival in the metastatic setting continues to be poor and there remains a need for improved therapeutic approaches. In order to enhance patient selection for the most appropriate next line of therapy, better predictive biomarkers of responsiveness will need to be developed in tandem with technologies to identify mechanisms of ICPI resistance. Adaptive, biomarker-driven trials will drive this evolution. The combination of ICPI with specific chemotherapies, targeted therapies and other immuno-oncology (IO) drugs in order to circumvent ICPI resistance and enhance efficacy is discussed. Recent data support the role for both targeted therapies and ICPI in the adjuvant setting of melanoma and targeted therapies in the adjuvant setting for renal cell carcinoma, which may influence the consideration of treatment on subsequent relapse. Approaches to select the optimal treatment sequences for these patients will need to be refined.
Collapse
Affiliation(s)
| | | | | | - Samra Turajlic
- Department of Medicine, Skin and Renal Units, Royal Marsden Hospital, 203 Fulham Road, Chelsea, London SW3 6JJ, UK
| |
Collapse
|