1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
The Effect of Latanoprost on Choroidal Vascularity Index in Glaucoma and Ocular Hypertension. J Glaucoma 2022; 31:972-978. [PMID: 35980849 DOI: 10.1097/ijg.0000000000002097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
PRCIS The choroidal vascularity index (CVI) is a new marker for the choroid. The decrease in CVI following latanoprost use can provide a better understanding of the pathogenesis of the posterior segment side effects of latanoprost such as cystoid macular edema and central serous choroidopathy. PURPOSE The purpose of this paper is to evaluate the changes in the CVI, total choroidal area (TCA), stromal area (SA), luminal area (LA), and choroidal thickness (CT) following latanoprost therapy in patients with primary open angle glaucoma and ocular hypertension. MATERIALS AND METHODS Patients with newly diagnosed primary open angle glaucoma or ocular hypertension who had never received antiglaucoma therapy were included. Each patient received latanoprost 0.005% once daily. Enhanced depth imaging mode of spectral-domain optical coherence tomography scans was taken before the start of latanoprost therapy and in the first and third months. Subfoveal CT, CVI, TCA, LA, and SA for the submacular area, and 4 quadrants of the peripapillary area were calculated from the scans. RESULTS A total of 36 eyes of 18 patients were analyzed. Subfoveal CT increased significantly ( P =0.007). Mean TCA ( P =0.008) and SA ( P <0.001) in the first and third months were higher than baseline in the submacular regions. Mean CVI was lower in the first and third months ( P <0.001). There was an increase in the mean TCA and SA in the peripapillary temporal ( P =0.001 and 0.028) and inferior ( P =0.002 and <0.001) quadrants and a decrease in mean CVI in the temporal ( P =0.027) and inferior ( P =0.003) peripapillary quadrants. A negative correlation was found between the rate of decrease in intraocular pressure and the macular region CVI. CONCLUSIONS Following latanoprost use for several months, the CVI was significantly decreased in newly treated patients with glaucoma or ocular hypertension, among other changes to the choroid. These findings may contribute to a better understanding of the effects of prostaglandins on the posterior segment of the eye.
Collapse
|
3
|
Latanoprostene Bunod 0.024% in the Treatment of Open-Angle Glaucoma and Ocular Hypertension: A Meta-Analysis. J Clin Med 2022; 11:jcm11154325. [PMID: 35893417 PMCID: PMC9331308 DOI: 10.3390/jcm11154325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Latanoprostene bunod (LBN) 0.024%, a newly approved glaucoma eye drop, is metabolized into latanoprost acid and a nitric oxide (NO)-donating moiety, thus increasing the outflow of aqueous humor through the uveoscleral and trabecular routes, respectively. This study aimed to evaluate the intraocular pressure (IOP)-lowering effect of LBN among patients with open-angle glaucoma (OAG) and ocular hypertension (OHT). The effectiveness of LBN was also compared with timolol maleate 0.5% and latanoprost 0.005%. We searched PubMed and Embase between 1 January 2010, and 31 March 2022 and adopted only peer-reviewed clinical studies in our meta-analysis. A total of nine studies (2389 patients with OAG or OHT) assessing the IOP-reduction effect of LBN were included. Standardized mean differences (SMDs) of IOP between post-treatment time points (2 weeks, 6 weeks, 3 months, 6 months, 9 months, and 12 months) and baseline were calculated. The pooled analysis according to each time point revealed a significant IOP drop after LBN treatment (all p values for SMD < 0.05). In addition, LBN revealed a significantly stronger efficacy in decreasing IOP than timolol maleate 0.5% and latanoprost 0.005% during the follow-up period of three months. No serious side effects of LBN 0.024% were reported. Our study concluded that LBN could achieve good performance for IOP reduction in patients with OAG and OHT. The safety was favorable with no severe side effects.
Collapse
|
4
|
Liu P, Wang F, Song Y, Wang M, Zhang X. Current situation and progress of drugs for reducing intraocular pressure. Ther Adv Chronic Dis 2022; 13:20406223221140392. [PMID: 36479139 PMCID: PMC9720821 DOI: 10.1177/20406223221140392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, the most common cause of irreversible blindness worldwide, usually causes characteristic optic nerve damage. Pathological intraocular pressure (IOP) elevation is a major risk factor. Drug reduction of IOP is the preferred treatment for clinicians because it can delay the progression of disease. However, the traditional IOP-lowering drugs currently used by patients may be poorly tolerated. Therefore, in recent years, some new drugs have been put into clinical application or in clinical phase I–III studies. They have a better IOP-lowering effect and fewer adverse reactions. Because glaucoma is a chronic disease, drugs need to be administered continuously for a long time. For patients, good compliance and high drug bioavailability have a positive effect on the prognosis of the disease. Therefore, clinicians and scientists have developed drug delivery systems to solve this complex problem. In addition, natural compounds and dietary supplements have a good effect of reducing IOP, and they can also protect the optic nerve through antioxidant action. We summarize the current traditional drugs, new drugs, sustained-release drug delivery systems, and complementary drugs and outline the mechanism of action and clinical effects of these drugs on glaucoma and their recent advances.
Collapse
Affiliation(s)
- Peiyu Liu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Menghui Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330006, China
| |
Collapse
|
5
|
Wang T, Cao L, Jiang Q, Zhang T. Topical Medication Therapy for Glaucoma and Ocular Hypertension. Front Pharmacol 2021; 12:749858. [PMID: 34925012 PMCID: PMC8672036 DOI: 10.3389/fphar.2021.749858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is one of the most common causes of blindness, thus seriously affecting people’s health and quality of life. The topical medical therapy is as the first line treatment in the management of glaucoma since it is inexpensive, convenient, effective, and safe. This review summarizes and compares extensive clinical trials on the topical medications for the treatment of glaucoma, including topical monotherapy agents, topical fixed-combination agents, topical non-fixed combination agents, and their composition, mechanism of action, efficacy, and adverse effects, which will provide reference for optimal choice of clinical medication. Fixed-combination therapeutics offer greater efficacy, reliable security, clinical compliance, and tolerance than non-fixed combination agents and monotherapy agents, which will become a prefer option for the treatment of glaucoma. Meanwhile, we also discuss new trends in the field of new fixed combinations of medications, which may better control IOP and treat glaucoma.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Linlin Cao
- Department of Pharmaceutics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Vater C, Mehnert E, Bretschneider H, Bolte J, Findeisen L, Matuszewski LM, Zwingenberger S. Dose-Dependent Effects of a Novel Selective EP 4 Prostaglandin Receptor Agonist on Treatment of Critical Size Femoral Bone Defects in a Rat Model. Biomedicines 2021; 9:biomedicines9111712. [PMID: 34829941 PMCID: PMC8615441 DOI: 10.3390/biomedicines9111712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Difficulties in treating pseudarthrosis and critical bone defects are still evident in physicians’ clinical routines. Bone morphogenetic protein 2 (BMP-2) has shown promising osteoinductive results but also considerable side effects, not unexpected given that it is a morphogen. Thus, the bone regenerative potential of the novel selective, non-morphogenic EP4 prostaglandin receptor agonist KMN-159 was investigated in this study. Therefore, mineralized collagen type-1 matrices were loaded with different amounts of BMP-2 or KMN-159 and implanted into a 5 mm critical-sized femoral defect in rats. After 12 weeks of observation, micro-computed tomography scans were performed to analyze the newly formed bone volume (BV) and bone mineral density (BMD). Histological analysis was performed to evaluate the degree of defect healing and the number of vessels, osteoclasts, and osteoblasts. Data were evaluated using Kruskal-Wallis followed by Dunn’s post hoc test. As expected, animals treated with BMP-2, the positive control for this model, showed a high amount of newly formed BV as well as bone healing. For KMN-159, a dose-dependent effect on bone regeneration could be observed up to a dose optimum, demonstrating that this non-morphogenic mechanism of action can stimulate bone formation in this model system.
Collapse
Affiliation(s)
- Corina Vater
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Elisabeth Mehnert
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Henriette Bretschneider
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Julia Bolte
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Findeisen
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lucas-Maximilian Matuszewski
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
7
|
Wu X, Yang X, Liang Q, Xue X, Huang J, Wang J, Xu Y, Tong R, Liu M, Zhou Q, Shi J. Drugs for the treatment of glaucoma: Targets, structure-activity relationships and clinical research. Eur J Med Chem 2021; 226:113842. [PMID: 34536672 DOI: 10.1016/j.ejmech.2021.113842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023]
Abstract
Glaucoma is the third leading cause of blindness and impairment of vision worldwide, after refractive errors and cataracts. According to the survey, the number of people with glaucoma is more than 76 million, with projections increasing to 112 million by 2040. With the coming of an aging society, the number of people suffering from glaucoma will increase day by day. Glaucoma is a heterogeneous disease characterized by damage to the head of the optic nerve and visual field. High intraocular pressure is a major risk and cause of glaucoma optic neuropathy. Therefore, drug lowering intraocular pressure therapy is still the first-line therapy in clinical practice. Here, the targets, structure-activity relationship, and clinical progress of drugs for the treatment of glaucoma are reviewed.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiali Xue
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu Sichuan, 610041, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, 550002, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, 550002, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China
| | - Maoyu Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China.
| | - Qiaodan Zhou
- Ultrasonography Lab, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu Sichuan, 610072, China.
| |
Collapse
|
8
|
Analysis of the Responsiveness of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in the Treatment of OAG/OHT Patients. J Ophthalmol 2021; 2021:5586719. [PMID: 34123413 PMCID: PMC8169256 DOI: 10.1155/2021/5586719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aim Within the clinical setting, some patients have been identified as lacking in response to PGAs. This meta-analysis study aimed to evaluate the responsiveness of latanoprost, travoprost, bimatoprost, and tafluprost in OAG/OHT patients, latanoprost nonresponders (LNRs), and the IOP-reducing efficacy and safety. Methods A literature search was conducted on PubMed, Embase, and the Cochrane Controlled Trials Register. The primary clinical endpoint was the number of responders at the end of the study. The secondary clinical endpoint was the IOP reduction at the endpoint from baseline. Safety evaluation included five common adverse events: conjunctival hyperemia, hypertrichosis, ocular burning, ocular itching, and foreign-body sensation. Results Eleven articles containing ten RCTs were included in this meta-analysis study. The results highlighted that, in the OAG/OHT population, there was no statistically significant difference in the responsiveness of the four PGAs. Bimatoprost had a better IOP-reducing efficacy than latanoprost. There was no significant difference in the IOP-reducing efficacy of travoprost, latanoprost, and tafluprost. In LNRs, the responsiveness of bimatoprost, travoprost, and latanoprost did not show statistical differences. Bimatoprost reduced IOP with a greater extent than latanoprost and travoprost in LNRs, while there was no significant difference in the IOP-reducing efficacy of travoprost and latanoprost. No serious adverse events occurred with the treatment of the four PGAs. The prevalence of conjunctival hyperemia due to bimatoprost or tafluprost was significantly higher than that of latanoprost. Other adverse events had no significant difference between the four drugs. Conclusion The existing studies cannot prove that latanoprost, travoprost, bimatoprost, and tafluprost have different responsiveness in OAG/OHT patients. Switching to bimatoprost or travoprost cannot achieve a significant improvement in responsiveness in LNRs. Bimatoprost has a better IOP-reducing efficacy than latanoprost and travoprost. No serious adverse events occurred during treatment with any medication we studied.
Collapse
|
9
|
Miller PE, Eaton JS. Medical anti-glaucoma therapy: Beyond the drop. Vet Ophthalmol 2020; 24 Suppl 1:2-15. [PMID: 33164328 DOI: 10.1111/vop.12843] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Barriers to effective medical therapy are numerous and include difficulties with effective and sustained control of intraocular pressure (IOP) and adherence to prescribed anti-glaucoma drop regimens. In an effort to circumvent these challenges, a number of new anti-glaucoma therapies with sustained effects have emerged. Methods for sustained delivery of prostaglandin analogs are being intensely investigated and many are in human clinical trials. Intracameral devices include the following: Allergan's Durysta™ Bimatoprost SR, Envisia Therapeutics' ENV515 travoprost implant, Glaukos' iDose™ , Ocular Therapeutix's OTX-TIC travoprost implant, and Santen's polycaprolactone implant with PGE2-derivative DE-117. Other prostaglandin-based technologies include Allergan's bimatoprost ring (placed in the conjunctival fornix), Ocular Therapeutics' OTX-TP intracanalicular travoprost implant, subconjunctival latanoprost in a liposomal formulation, and the PGE2 derivative PGN 9856-isopropyl ester that is applied to the periorbital skin. Exciting breakthroughs in gene therapy include using viral vectors to correct defective genes such as MYOC or to modulate gonioimplant fibrosis, CRISPR technology to edit MYOC or to alter aquaporin to reduce aqueous humor production, and siRNA technology to silence specific genes. Stem cell technology can repopulate depleted tissues or, in the case of Neurotech's Renexus® NT-501 intravitreal implant, serve as a living drug delivery device that continuously secretes neurotrophic factors. Other unique approaches involve nanotechnology, nasal sprays that deliver drug directly to the optic nerve and noninvasive alternating current stimulation of surviving cells in the optic nerve. Over time these modalities are likely to challenge the preeminent role that drops currently play in the medical treatment of glaucoma in animals.
Collapse
Affiliation(s)
- Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Seth Eaton
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Esaki Y, Katsuta O, Kamio H, Noto T, Mano H, Iwamura R, Yoneda K, Odani-Kawabata N, Morishima K, Shams NK. The Antiglaucoma Agent and EP2 Receptor Agonist Omidenepag Does Not Affect Eyelash Growth in Mice. J Ocul Pharmacol Ther 2020; 36:529-533. [PMID: 32412835 PMCID: PMC7482127 DOI: 10.1089/jop.2020.0003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose: The present study investigated the effects of the antiglaucoma agent and selective E2 receptor agonist omidenepag isopropyl (OMDI) on eyelash growth in comparison with a prostaglandin analog (prostamide receptor agonist) in mice. Methods: Four-week-old female mice (C57BL/6J) were divided into 3 groups of n = 10 each. The groups were administered 3 μL of 0.003% OMDI solution, the vehicle (negative control), or a 0.03% bimatoprost solution (positive control) on the upper eyelids of the right eyes once daily for 14 days. On the 15th day, all animals were euthanized, and the upper eyelids with eyelashes were fixed with 10% neutral formalin. Eyelashes were evaluated for number, length, and thickness using a stereomicroscope. Specimens were then paraffin-embedded and stained with hematoxylin and eosin, followed by microscopic examination to assess eyelash morphology and growth cycle. Results: Eyelash number (143.5 ± 6.7/eyelid), thickness, and percentage of dermal papilla in the anagen phase in the OMDI group were similar to those observed in the vehicle group (eyelash number, 144.2 ± 5.7/eyelid). In contrast, eyelash number (166.7 ± 7.0/eyelid), thickness, and the percentage of dermal papilla in the anagen phase were significantly greater in the bimatoprost group compared with those of the vehicle group. Conclusions: Unlike existing prostaglandin analogs, our findings indicate that OMDI has no effect on eyelash growth in mice, suggesting that it may be a promising antiglaucoma agent with a reduced number of adverse effects.
Collapse
Affiliation(s)
- Yoshihiko Esaki
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Osamu Katsuta
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Hitomi Kamio
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Takahisa Noto
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Hidetoshi Mano
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Ryo Iwamura
- Ube Industries, Ltd., Pharmaceuticals Research Laboratory, Pharmaceutical Division, Yamaguchi, Japan
| | - Kenji Yoneda
- Ube Industries, Ltd., Pharmaceuticals Research Laboratory, Pharmaceutical Division, Yamaguchi, Japan
| | - Noriko Odani-Kawabata
- Santen Pharmaceutical Co., Ltd., Osaka, Japan.,Santen, Inc., Research and Development Division, Emeryville, California, USA
| | - Kenji Morishima
- Santen Pharmaceutical Co., Ltd., Research and Development Division, Nara, Japan
| | - Naveed K Shams
- Santen, Inc., Research and Development Division, Emeryville, California, USA
| |
Collapse
|
11
|
Yamamoto Y, Taniguchi T, Inazumi T, Iwamura R, Yoneda K, Odani-Kawabata N, Matsugi T, Sugimoto Y, Shams NK. Effects of the Selective EP2 Receptor Agonist Omidenepag on Adipocyte Differentiation in 3T3-L1 Cells. J Ocul Pharmacol Ther 2020; 36:162-169. [PMID: 31934812 PMCID: PMC7175626 DOI: 10.1089/jop.2019.0079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose: We aimed at comparing the effects of omidenepag (OMD) with those of prostaglandin F (FP) receptor agonists (FP agonists) on adipogenesis in mouse 3T3-L1 cells. Methods: To evaluate the agonistic activities of OMD against the mouse EP2 (mEP2) receptor, we determined cAMP contents in mEP2 receptor-expressing CHO cells by using radioimmunoassays. Overall, 3T3-L1 cells were cultured in differentiation medium for 10 days and adipocyte differentiation was assessed according to Oil Red O-stained cell areas. Changes in expression levels of the adipogenic transcription factors Pparg, Cebpa, and Cebpb were determined by using real-time polymerase chain reaction (PCR). OMD at 0.1, 1, 10, and 40 μmol/L, latanoprost free acid (LAT-A) at 0.1 μmol/L, or prostaglandin F2α (PGF2α), at 0.1 μmol/L were added to cell culture media during adipogenesis. Oil Red O-stained areas and expression patterns of transcription factor targets of OMD or FP agonists were compared with those of untreated controls. Results: The 50% effective concentration (EC50) of OMD against the mEP2 receptor was 3.9 nmol/L. Accumulations of Oil Red O-stained lipid droplets were observed inside control cells on day 10. LAT-A and PGF2α significantly inhibited the accumulation of lipid droplets; however, OMD had no effect on this process even at concentrations up to 40 μmol/L. LAT-A and PGF2α significantly suppressed Pparg, Cebpa, and Cebpb gene expression levels during adipocyte differentiation. Conversely, OMD had no obvious effects on the expression levels of these genes. Conclusions: A selective EP2 receptor agonist, OMD, did not affect the adipocyte differentiation in 3T3-L1 cells, whereas FP agonists significantly inhibited this process.
Collapse
Affiliation(s)
- Yasuko Yamamoto
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Takazumi Taniguchi
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Iwamura
- Pharmaceuticals Research Laboratory, Pharmaceutical Division, Ube Industries, Ltd., Yamaguchi, Japan
| | - Kenji Yoneda
- Pharmaceuticals Research Laboratory, Pharmaceutical Division, Ube Industries, Ltd., Yamaguchi, Japan
| | - Noriko Odani-Kawabata
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Osaka, Japan.,Research and Development Division, Santen, Inc., Emeryville, California
| | - Takeshi Matsugi
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naveed K Shams
- Research and Development Division, Santen, Inc., Emeryville, California
| |
Collapse
|
12
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|