1
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
2
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
3
|
Copper(II)-Catalyzed 1,6-Hydroboration Reactions of p‑Quinone Methides Under Ligand-Free Conditions: A Sequential Methodology to gem-Disubstituted Methanols. Catal Letters 2022. [DOI: 10.1007/s10562-022-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Sak K. Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-based Drugs? Curr Cancer Drug Targets 2022; 22:741-748. [PMID: 35578889 DOI: 10.2174/1568009622666220516102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Approval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acidbased therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid elements in their structure are currently in intensive preclinical studies, allowing us to suppose that at least some of them will enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acidbased drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-thecounter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.
Collapse
|
5
|
Ma J, Wang X, Lu H, Liang Z, Wang L. Ixazomib Combined With Autologous Stem Cell Transplantation for POEMS Syndrome: A Case Report and Meta-Analysis. Technol Cancer Res Treat 2022; 21:15330338221123634. [PMID: 36579839 PMCID: PMC9830575 DOI: 10.1177/15330338221123634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Objective: Polyneuropathy, organomegaly, endocrinopathy, M-protein, skin changes (POEMS) syndrome is a rare monoclonal plasma cell proliferation disorder. At present, there is no unified treatment for POEMS syndrome. Here, we describe one case with POEMS syndrome with obvious neurological symptoms diagnosed in September 2020. We made a meta--analysis to assess the efficacy of treatment strategies in recent years. Methods: We retrospectively analyzed the diagnosis and treatment of this patient, and searched relevant articles in PubMed, Embase, and MEDLINE databases using MedicalSubject Headings (MeSH) (eg, POEMS, Therapy, Drug Therapy, Biological Therapy, Combined Modality Therapy, Hematopoietic Stem Cell Transplantation, Immunotherapy, Molecular Targeted Therapy, Chemoradiotherapy, and Salvage Therapy) and free words, and performed the statistical analysis. Results: The patient's efficacy evaluation was complete response (CR) after treatment with ixazomib combined with autologous stem cell transplantation (ASCT). Overall, 20 articles consist of 6 clinical trials, 14 retrospective studies, and 936 patients were included in this meta-analysis. There was no significant difference in complete hematologic response (CRH) rate between people who underwent ASCT and those who did not. However, ASCT might have a better survival rate. Conclusions: Ixazomib combined with ASCT therapy may be a safe and effective method for patients with POEMS syndrome.
Collapse
Affiliation(s)
- Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Xiaoyue Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Hui Lu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhihao Liang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Liang Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
6
|
Sokol J, Guman T, Chudej J, Hlebaskova M, Stecova N, Valekova L, Kucerikova M, Stasko J. Ixazomib, lenalidomide, and dexamethasone combination in "real-world" clinical practice in patients with relapsed/refractory multiple myeloma. Ann Hematol 2021; 101:81-89. [PMID: 34550463 DOI: 10.1007/s00277-021-04663-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Ixazomib is approved for use in combination with lenalidomide and dexamethasone (IRd) for patients with multiple myeloma (MM) who received at least one previous therapy. Registration study "TOURMALINE MM-1" was published in 2016. Nevertheless, clinical trials are significantly different from real-world use. From June 2016 to December 2018, IRd was available for Slovak patients with relapsed/refractory MM through a Named Patient Program. The aim of this study was to evaluate the efficacy and safety of ixazomib. We analyzed in this cohort study outcomes of 106 MM patients treated with IRd at 2 academic centers. The median age at diagnosis was 63 years (44-78). The median number of prior lines was 2 (1-7). The majority had high international staging system (ISS) score: 18, 29, and 59 were in the ISS I, ISS II, and ISS III groups, respectively. Treatment continued until progression, unacceptable toxicity, or death. The median follow-up for the entire cohort was 29 (0-49) months. The overall response rate was 74.5% (complete remission, 7.5%; partial remission, 67%). The median overall survival was not reached. Median progression-free survival (PFS) was 43 months (95% CI 35.6-50.4). The Kaplan-Meier method was used to generate survival curves, and we compared the influence of different factors on PFS. The most common hematological adverse events of any grade were neutropenia (90.4%), anemia (55.6%), and thrombocytopenia (43.4%). Our real-world data support the use of IRd as a highly effective and well-tolerated oral treatment protocol for relapsed myeloma.
Collapse
Affiliation(s)
- Juraj Sokol
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tomas Guman
- Department of Hematology and Oncohematology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11, Kosice, Slovakia.
| | - Juraj Chudej
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Monika Hlebaskova
- Department of Hematology and Oncohematology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Natalia Stecova
- Department of Hematology and Oncohematology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Lubica Valekova
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Monika Kucerikova
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Stasko
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Roeten MS, van Meerloo J, Kwidama ZJ, ter Huizen G, Segerink WH, Zweegman S, Kaspers GJ, Jansen G, Cloos J. Pre-Clinical Evaluation of the Proteasome Inhibitor Ixazomib against Bortezomib-Resistant Leukemia Cells and Primary Acute Leukemia Cells. Cells 2021; 10:665. [PMID: 33802801 PMCID: PMC8002577 DOI: 10.3390/cells10030665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
At present, 20-30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150-160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.
Collapse
Affiliation(s)
- Margot S.F. Roeten
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Johan van Meerloo
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Zinia J. Kwidama
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Giovanna ter Huizen
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Wouter H. Segerink
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Sonja Zweegman
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Gertjan J.L. Kaspers
- Princess Maxima Center of Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Jacqueline Cloos
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| |
Collapse
|
8
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
9
|
Xie SC, Dick LR, Gould A, Brand S, Tilley L. The proteasome as a target for protozoan parasites. Expert Opin Ther Targets 2019; 23:903-914. [PMID: 31679410 DOI: 10.1080/14728222.2019.1685981] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The proteasome is a multi-subunit enzyme complex responsible for the turnover of short-lived, abnormal or damaged proteins in eukaryotic cells. As organisms that undergo rapid growth and cell division, protozoan parasites exist on the knife-edge of proteotoxic catastrophe and thus rely heavily on their protein quality control machinery for survival. Because of this, the proteasome has recently emerged as a desirable drug target.Area covered: This review focuses on efforts to identify protozoan parasite-specific proteasome inhibitors using substrate profiling, library screening, and in vitro evolution of resistance approaches to inform medicinal chemistry. Targeting the parasite's 20S proteasome chymotrypsin-like (β5) activity and selectively inhibiting protein turnover in parasites compared to human cells are critical properties of potent, selective inhibitors.Expert opinion: Proteasome inhibitors have the potential for rapid action against all stages, all species and all strains of plasmodium and kinetoplastid parasites. Given the high level of conservation of proteasome active sites in eukaryotes, an important challenge is achieving inhibitors that show sufficient selectivity while maintaining properties consistent with drug development.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | | | - Alexandra Gould
- Oncology Chemistry, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Stephen Brand
- Medicines for Malaria Venture, CH-1215 Geneva 15, Switzerland
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|