1
|
Falcão L, Gomes PAL, Silva RAS, Ogasawara K, Gonzalez JVP, Nishizima A, Ohannesian VA, Magalhães LS, Solla DJF. Assessing Glibenclamide's efficacy on functional recovery in aneurysmal subarachnoid hemorrhage: A meta-analysis of randomized controlled trials. Clin Neurol Neurosurg 2025; 252:108847. [PMID: 40107191 DOI: 10.1016/j.clineuro.2025.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Glibenclamide, a sulfonylurea receptor 1 (SUR1) inhibitor initially developed for diabetes, has shown potential in reducing cerebral edema and neuroinflammation. This study evaluates its efficacy in improving functional outcomes and reducing complications in aSAH. METHODS Databases including PubMed, EMBASE, and Web of Science were searched for RCTs assessing Glibenclamide's effects in aSAH. Outcomes included modified Rankin Scale (mRS), mortality, rebleeding risk, hydrocephalus incidence, and hospital stay duration. Risk Ratio (RR) and Mean Differences (MD) were calculated using random- or fixed-effects models based on heterogeneity (I² statistic). RESULTS Four RCTs (290 participants) met inclusion criteria. No significant differences were found in mRS scores at 90 days (MD: 0.06, 95 % CI: -0.59-0.71, p = 0.86) or 180 days (MD: -0.43, 95 % CI: -1.09-0.23, p = 0.20). Similarly, mortality (RR: 0.87, 95 % CI: 0.49-1.54, p = 0.665), rebleeding risk (RR: 0.78, 95 % CI: 0.23-2.60, p = 0.639), hydrocephalus incidence (RR: 1.64, 95 % CI: 0.96-2.79, p = 0.064), and hospital stay (MD: 0.09 days, 95 % CI: -2.15-2.32, p = 0.94) showed no significant differences. The meta-regression analysis showed that Glibenclamide dosage (p = 0.0007) and modified Fisher Scale (p = 0.0312) were significantly associated with mRS outcomes, while age (p = 0.1506), WFNS grade (p = 0.1956), and Hunt-Hess Scale (p = 0.1464) had no significant impact. CONCLUSION Current evidence indicates that Glibenclamide does not significantly improve outcomes or reduce complications in aSAH. While promising for cerebral edema, larger multicenter RCTs with standardized protocols and extended follow-ups are needed to clarify its role.
Collapse
Affiliation(s)
- Luciano Falcão
- Bahiana School of Medicine and Public Health, Brotas, Salvador, Bahia, Brazil.
| | | | | | - Kenzo Ogasawara
- Bahiana School of Medicine and Public Health, Brotas, Salvador, Bahia, Brazil
| | | | - André Nishizima
- Bahiana School of Medicine and Public Health, Brotas, Salvador, Bahia, Brazil
| | - Victor Arthur Ohannesian
- Albert Einstein Israeli Faculty of Health Sciences, Av. Padre Lebret, Morumbi, São Paulo, São Paulo 05653-120, Brazil
| | | | - Davi J Fontoura Solla
- Department of Neurosurgery, Hospital do Subúrbio, Rua Manuel Lino, 141, Periperi, Salvador, Bahia 40720-460, Brazil
| |
Collapse
|
2
|
Klapproth S, Meyer L, Kniep H, Bechstein M, Kyselyova A, Gellißen S, Heitkamp C, Winkelmeier L, Hanning U, Schön G, Heinze M, Schulte K, Fiehler J, Broocks G. Delayed neurological recovery in ischemic stroke patients undergoing endovascular treatment is associated with baseline hyperglycemia: a treatable cause of the stunned brain phenomenon? J Neurol 2025; 272:313. [PMID: 40183971 PMCID: PMC11971131 DOI: 10.1007/s00415-025-13019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS In ischemic stroke, there is limited data regarding the impact of baseline hyperglycemia on the treatment effect of recanalization on neurological recovery. This study aimed to directly compare-how short- and long-term serum glucose levels modify the effect of recanalization on functional outcome in patients with ischemic stroke and specifically analyze the occurrence of delayed neurological recovery ("stunned brain phenomenon"). METHODS Observational retrospective analysis including patients with anterior circulation ischemic stroke and large vessel occlusion undergoing mechanical thrombectomy following multimodal-CT upon admission. The primary endpoint was delayed neurological recovery, defined as a lack of early neurological improvement (ENI) at 24 h despite achieving functional independence at day 90. Binary ENI was defined as 24 h-NIHSS ≤ 8 points. The treatment effect of recanalization defined as mTICI 2b-3 was determined for patients with high versus low serum blood glucose (BG, cut-off: 140 mg/dl). Inverse-probability weighting analysis (IPW) was used to assess the treatment effect of recanalization according to glucose profiles. RESULTS A total of 348 patients were included in the analysis. The treatment effect of recanalization in patients with low BG on the NIHSS at 24 h and binary ENI was - 3.5 (95%CI - 5.3 to - 1.8, p < 0.001) and 22.4% (95%CI 13.1-31.8, p < 0.001). Furthermore, recanalization in patients with low BG was associated with functional independence at day 90 (26.4%, 95%CI 17.1-35.8, p < 0.001). For patients with high BG, recanalization was not associated with a lower NIHSS at 24 h ( - 1.4, 95%CI - 3.7-0.9, p = 0.24) although significantly being associated with functional independence at day 90 (+ 14.7%, 95%CI 4.5-24.9, p = 0.005). DISCUSSION Successful vessel recanalization was associated with better functional outcome at day 90 independent of BG profiles; however, acute hyperglycemia was significantly linked to delayed neurological recovery. Hence, hyperglycemia might be a major cause of the stunned brain phenomenon and might consequently serve as a promising target for adjunctive therapy in the treatment of ischemic stroke patients.
Collapse
Affiliation(s)
- Susan Klapproth
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Lukas Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Helge Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Kyselyova
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neuroradiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christian Heitkamp
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Laurens Winkelmeier
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Heinze
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karolin Schulte
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neuroradiology, HELIOS Medical Center, Campus of MSH Medical School Hamburg, Schwerin, Germany
| |
Collapse
|
3
|
Fan L, Xu J, Wang T, Yang K, Bai X, Yang W. Sulfonylurea drugs for people with severe hemispheric ischemic stroke. Cochrane Database Syst Rev 2025; 3:CD014802. [PMID: 40066941 PMCID: PMC11895423 DOI: 10.1002/14651858.cd014802.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
BACKGROUND Large hemispheric infarction (LHI), caused by occlusion of the internal carotid or middle cerebral artery, is the most malignant type of supratentorial ischemic stroke. Due to severe intracranial edema, mortality fluctuates between 53% and 78%, even after the most effective medical treatment. Decompressive craniectomy can reduce mortality by approximately 17% to 36%, but the neurological outcomes are not satisfactory, and there are contraindications to surgery. Therapeutic hypothermia shows promising effects in preclinical research, but it causes many complications, and clinical studies have not confirmed its efficacy. Glibenclamide is a type of sulfonylurea. Preclinical research shows that glibenclamide can reduce mortality and brain edema and improve neurological outcomes in animal models of ischemic stroke. Sulfonylureas may be a promising treatment for individuals with LHI. OBJECTIVES To evaluate the effects of sulfonylurea drugs in people with large hemispheric ischemic stroke. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, five other databases, and three trials registers. We also searched gray literature sources, checked the bibliographies of included studies and relevant systematic reviews, and used Cited Reference Search in Google Scholar. The latest search date was 23 March 2024. SELECTION CRITERIA We included randomized controlled trials (RCTs) that compared sulfonylureas with placebo, hypothermia, or usual care in people with severe hemispheric ischemic stroke. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were neurological and functional outcomes. Our secondary outcomes were death, quality of life, adverse events, and complications. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS This review includes two RCTs (N = 621): the GAMES-RP trial (glyburide advantage in malignant edema and stroke) and the CHARM trial (phase 3 study to evaluate the efficacy and safety of intravenous BIIB093 (glibenclamide) for severe cerebral edema following large hemispheric infarction). Both studies compared the effects of intravenous glyburide (0.13 mg bolus intravenous injection for the first 2 minutes, followed by an infusion of 0.16 mg/h for the first 6 hours and then 0.11 mg/h for the remaining 66 hours) to placebo. The GAMES-RP trial (N = 86) was conducted in 18 hospitals in the USA (mean age: intervention = 58 ± 11 years; control = 63 ± 9 years); the CHARM trial (N = 535) was conducted in 20 countries across North and South America and Eurasia (mean age: intervention = 60.5 ± 11.17 years; control = 61.6 ± 10.81 years). The overall risk of bias was high in both trials. Neither trial reported neurological outcomes. Compared with placebo, glyburide may result in little to no difference in functional outcomes, assessed with the modified Rankin Scale (range 0 to 4) at 90 days (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.89 to 1.32; P = 0.43; 2 studies, 508 participants; low-certainty evidence), or death (RR 0.78, 95% CI 0.36 to 1.69; P = 0.53; 2 studies, 595 participants; low-certainty evidence). Glyburide likely results in a large increased risk of hypoglycemia (RR 4.66, 95% CI 1.59 to 13.67; P = 0.005; 2 studies, 601 participants; moderate-certainty evidence) compared to placebo. However, it probably results in little to no difference between groups in cardiac events (RR 0.73, 95% CI 0.47 to 1.14; P = 0.17; 2 studies, 601 participants; moderate-certainty evidence), or pneumonia (RR 0.72, 95% CI 0.36 to 1.44; 1 study, 518 participants; moderate-certainty evidence), and may result in little to no difference between groups in neurological deterioration within three days (RR 0.88, 95% CI 0.61 to 1.27; 1 study, 77 participants; low-certainty evidence). AUTHORS' CONCLUSIONS Compared to placebo, intravenous glyburide may have little to no effect on functional outcomes, assessed with the modified Rankin Scale, or mortality. It may also have little to no effect on neurological deterioration within three days, and probably has little to no effect on cardiac events or pneumonia. However, intravenous glyburide probably results in a large increased risk of hypoglycemia. This review includes only two RCTs at overall high risk of bias. We do not have sufficient evidence to determine the effects of sulfonylureas in people with ischemic stroke. More large studies, which include more sulfonylurea drugs with different routes of administration and dosages, and different age groups with ischemic stroke, would help to reduce the current uncertainties.
Collapse
Affiliation(s)
- Linlin Fan
- Neurocritical Care Unit, Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jin Xu
- Education Department, Capital Medical University Xuanwu Hospital, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Tripathi M, Gharti L, Bansal A, Kaurav H, Sheth S. Intranasal Mucoadhesive In Situ Gel of Glibenclamide-Loaded Bilosomes for Enhanced Therapeutic Drug Delivery to the Brain. Pharmaceutics 2025; 17:193. [PMID: 40006560 PMCID: PMC11859129 DOI: 10.3390/pharmaceutics17020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The neuroprotective efficacy of glibenclamide (GLIB) has been demonstrated in multiple rodent models of ischemia, hemorrhagic stroke, traumatic brain damage, spinal cord injury, and metastatic brain tumors. Due to its poor solubility, GLIB has low oral bioavailability, limiting its transportation to the brain via the oral route. OBJECTIVES Here, we attempted to develop and optimize an intranasal mucoadhesive in situ gel of GLIB-loaded bilosomes using a 32 Box-Behnken design for brain drug delivery. METHODS To facilitate a longer residence time of the administered dose within the nasal cavity, the prepared bilosomes were loaded into a mucoadhesive in situ gel providing resistance to rapid mucociliary clearance. The amounts of sodium deoxycholate, the cholesterol/Span 40 mixture, and the molar ratio between the mixture's components were chosen as independent variables, while the entrapment efficiency and in vitro drug release were selected as dependent variables. RESULTS AND CONCLUSIONS The optimal formulation was analyzed for particle size and entrapment efficiency, which were found to be 270.6 nm and 68.39%, respectively. In vitro drug release from optimal formulation after 12 h was 87.29 ± 1.98% as compared to 52.01 ± 2.04% of plain in situ gel of drug. An in vivo brain drug delivery study performed on Swiss albino mice showed that the brain concentration of drug through intranasal administration from mucoadhesive in situ gel of GLIB-bilosomes after 12 h was 2.12 ± 0.16 µg/mL as compared to 0.68 ± 0.04 µg/mL from plain in situ gel of drug. Conclusively, the developed bilosomal formulation offers a favorable intranasal substitute with enhanced therapeutic drug delivery to the brain.
Collapse
Affiliation(s)
- Meenakshi Tripathi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (M.T.); (L.G.)
| | - Laxmi Gharti
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (M.T.); (L.G.)
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company plc, Allegan, MI 49010, USA;
| | - Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (M.T.); (L.G.)
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
5
|
Ding J, Ma X, Huang W, Yue C, Xu G, Wang Y, Sheng S, Liu M, Ren Y. Validation and refinement of a predictive nomogram using artificial intelligence: assessing in-hospital mortality in patients with large hemispheric cerebral infarction. Front Neurol 2024; 15:1398142. [PMID: 38984035 PMCID: PMC11231922 DOI: 10.3389/fneur.2024.1398142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Background Large Hemispheric Infarction (LHI) poses significant mortality and morbidity risks, necessitating predictive models for in-hospital mortality. Previous studies have explored LHI progression to malignant cerebral edema (MCE) but have not comprehensively addressed in-hospital mortality risk, especially in non-decompressive hemicraniectomy (DHC) patients. Methods Demographic, clinical, risk factor, and laboratory data were gathered. The population was randomly divided into Development and Validation Groups at a 3:1 ratio, with no statistically significant differences observed. Variable selection utilized the Bonferroni-corrected Boruta technique (p < 0.01). Logistic Regression retained essential variables, leading to the development of a nomogram. ROC and DCA curves were generated, and calibration was conducted based on the Validation Group. Results This study included 314 patients with acute anterior-circulating LHI, with 29.6% in the Death group (n = 93). Significant variables, including Glasgow Coma Score, Collateral Score, NLR, Ventilation, Non-MCA territorial involvement, and Midline Shift, were identified through the Boruta algorithm. The final Logistic Regression model led to a nomogram creation, exhibiting excellent discriminative capacity. Calibration curves in the Validation Group showed a high degree of conformity with actual observations. DCA curve analysis indicated substantial clinical net benefit within the 5 to 85% threshold range. Conclusion We have utilized NIHSS score, Collateral Score, NLR, mechanical ventilation, non-MCA territorial involvement, and midline shift to develop a highly accurate, user-friendly nomogram for predicting in-hospital mortality in LHI patients. This nomogram serves as valuable reference material for future studies on LHI patient prognosis and mortality prevention, while addressing previous research limitations.
Collapse
Affiliation(s)
- Jian Ding
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoming Ma
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Wendie Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chunxian Yue
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Geman Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Yumei Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shiying Sheng
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Meng Liu
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Ren
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Alquisiras-Burgos I, Hernández-Cruz A, Peralta-Arrieta I, Aguilera P. Resveratrol Prevents Cell Swelling Through Inhibition of SUR1 Expression in Brain Micro Endothelial Cells Subjected to OGD/Recovery. Mol Neurobiol 2024; 61:2099-2119. [PMID: 37848729 DOI: 10.1007/s12035-023-03686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The SUR1-TRPM4-AQP4 complex is overexpressed in the initial phase of edema induced after cerebral ischemia, allowing the massive internalization of Na+ and water within the brain micro endothelial cells (BMEC) of the blood-brain barrier. The expression of the Abcc8 gene encoding SUR1 depends on transcriptional factors that are responsive to oxidative stress. Because reactive oxygen species (ROS) are generated during cerebral ischemia, we hypothesized that antioxidant compounds might be able to regulate the expression of SUR1. Therefore, the effect of resveratrol (RSV) on SUR1 expression was evaluated in the BMEC cell line HBEC-5i subjected to oxygen and glucose deprivation (OGD) for 2 h followed by different recovery times. Different concentrations of RSV were administered. ROS production was detected with etidine, and protein levels were evaluated by Western blotting and immunofluorescence. Intracellular Na+ levels and cellular swelling were detected by imaging; cellular metabolic activity and rupture of the cell membrane were detected by MTT and LDH release, respectively; and EMSA assays measured the activity of transcriptional factors. OGD/recovery increased ROS production induced the AKT kinase activity and the activation of SP1 and NFκB. SUR1 protein expression and intracellular Na+ concentration in the HBEC-5i cells increased after a few hours of OGD. These effects correlated with cellular swelling and necrotic cell death, responses that the administration of RSV prevented. Our results indicate that the ROS/AKT/SP1-NFκB pathway is involved in SUR1 expression during OGD/recovery in BMEC of the blood-brain barrier. Thus, RSV prevented cellular edema formation through modulation of SUR1 expression.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur #3877, CDMX, 14269, Mexico City, Mexico
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, Mexico City, Mexico
| | - Arturo Hernández-Cruz
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, Mexico City, Mexico
| | - Irlanda Peralta-Arrieta
- Laboratorio de Transducción de Señales, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan #4502, CDMX, 14080, Mexico City, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur #3877, CDMX, 14269, Mexico City, Mexico.
| |
Collapse
|
7
|
Klapproth S, Meyer L, Kniep H, Bechstein M, Kyselyova A, Hanning U, Schön G, Rimmele L, Fiehler J, Broocks G. Effect of short- versus long-term serum glucose levels on early ischemic water homeostasis and functional outcome in patients with large vessel occlusion stroke. Eur J Neurol 2024; 31:e16166. [PMID: 38015448 PMCID: PMC11235831 DOI: 10.1111/ene.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE In ischemic stroke, the impact of short- versus long-term blood glucose level (BGL) on early lesion pathophysiology and functional outcome has not been assessed. The purpose of this study was to directly compare the effect of long-term blood glucose (glycated hemoglobin [HbA1c]) versus serum BGL on early edema formation and functional outcome. METHODS Anterior circulation ischemic stroke patients who underwent mechanical thrombectomy after multimodal computed tomography (CT) on admission were analyzed. Endpoints were early ischemic cerebral edema, measured by quantitative net water uptake (NWU) on initial CT and functional independence at Day 90. RESULTS A total of 345 patients were included. Patients with functional independence had significantly lower baseline NWU (3.1% vs. 8.3%; p < 0.001) and lower BGL (113 vs. 123 mg/dL; p < 0.001) than those without functional independence, while HbA1c levels did not differ significantly (5.7% vs. 5.8%; p = 0.15). A significant association was found for NWU and BGL (ß = 0.02, 95% confidence interval [CI] 0.006-0.03; p = 0.002), but not for HbA1c and NWU (ß = -0.16, 95% CI -0.53-0.21; p = 0.39). Mediation analysis showed that 67% of the effect of BGL on functional outcome was mediated by early edema formation. CONCLUSION Aggravated early edema and worse functional outcome was associated with elevated short-term serum BGL, but not with HbA1c levels. Hence, the link between short-term BGL and early edema development might be used as a target for adjuvant therapy in patients with ischemic stroke.
Collapse
Affiliation(s)
- Susan Klapproth
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lukas Meyer
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Helge Kniep
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anna Kyselyova
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Uta Hanning
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Gerhard Schön
- Institute of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leander Rimmele
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jens Fiehler
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional NeuroradiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
8
|
Sunny A, James RR, Menon SR, Rayaroth S, Daniel A, Thompson NA, Tharakan B. Matrix Metalloproteinase-9 inhibitors as therapeutic drugs for traumatic brain injury. Neurochem Int 2024; 172:105642. [PMID: 38008261 DOI: 10.1016/j.neuint.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality among young adults and the elderly. In the United States, TBI is responsible for around 30 percent of all injuries brought on by injuries in general. Vasogenic cerebral edema due to blood-brain barrier (BBB) dysfunction and the associated elevation of intracranial pressure (ICP) are some of the major causes of secondary injuries following traumatic brain injury. Matrix metalloproteinase-9 (MMP-9) is a therapeutic target for being an enzyme that degrades the proteins that make up a part of the microvascular basal lamina as well as inter-endothelial tight junctions of the blood-brain barrier. MMP-9-mediated BBB dysfunctions and the compromise of the BBB is a major pathway that leads the development of vasogenic cerebral edema, elevation of ICP, poor cerebral perfusion and brain herniation following traumatic brain injury. That makes MMP-9 an effective therapeutic target and endogenous or exogenous MMP-9 inhibitors as therapeutic drugs for preventing secondary brain damage after traumatic brain injury. Although our understanding of the mechanisms that underlie the primary and secondary stages of damage following a TBI has significantly improved in recent years, such information has not yet resulted in the successful development of novel pharmacological treatment options for traumatic brain injury. Recent pre-clinical and/or clinical studies have demonstrated that there are several compounds with specific or non-specific MMP-9 inhibitory properties either directly binding and inhibiting MMP-9 or by indirectly inhibiting MMP-9, with potential as therapeutic agents for traumatic brain injury. This article reviews the efficacy of several such medications and potential agents that include endogenous and exogeneous compounds that are at various levels of research and development. MMP-9-based therapeutic drug development has enormous potential in the pharmacological treatment of cerebral edema and/or neuronal injury resulting from traumatic brain injury.
Collapse
Affiliation(s)
- Angel Sunny
- Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | | | | | - Abhijith Daniel
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Namita Ann Thompson
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Krawchuk LJ, Sharrock MF. Prognostic Neuroimaging Biomarkers in Acute Vascular Brain Injury and Traumatic Brain Injury. Semin Neurol 2023; 43:699-711. [PMID: 37802120 DOI: 10.1055/s-0043-1775790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Prognostic imaging biomarkers after acute brain injury inform treatment decisions, track the progression of intracranial injury, and can be used in shared decision-making processes with families. Herein, key established biomarkers and prognostic scoring systems are surveyed in the literature, and their applications in clinical practice and clinical trials are discussed. Biomarkers in acute ischemic stroke include computed tomography (CT) hypodensity scoring, diffusion-weighted lesion volume, and core infarct size on perfusion imaging. Intracerebral hemorrhage biomarkers include hemorrhage volume, expansion, and location. Aneurysmal subarachnoid biomarkers include hemorrhage grading, presence of diffusion-restricting lesions, and acute hydrocephalus. Traumatic brain injury CT scoring systems, contusion expansion, and diffuse axonal injury grading are reviewed. Emerging biomarkers including white matter disease scoring, diffusion tensor imaging, and the automated calculation of scoring systems and volumetrics are discussed.
Collapse
Affiliation(s)
- Lindsey J Krawchuk
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew F Sharrock
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Catapano JS, Koester SW, Bond KM, Srinivasan VM, Farhadi DS, Rumalla K, Cole TS, Baranoski JF, Winkler EA, Graffeo CS, Muñoz-Casabella A, Jadhav AP, Ducruet AF, Albuquerque FC, Lawton MT, Jha RM. Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage Receiving Sulfonylureas: A Propensity-Adjusted Analysis. World Neurosurg 2023; 176:e400-e407. [PMID: 37236313 DOI: 10.1016/j.wneu.2023.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is associated with increased blood-brain barrier permeability, disrupted tight junctions, and increased cerebral edema. Sulfonylureas are associated with reduced tight-junction disturbance and edema and improved functional outcome in aSAH animal models, but human data are scant. We analyzed neurological outcomes in aSAH patients prescribed sulfonylureas for diabetes mellitus. METHODS Patients treated for aSAH at a single institution (August 1, 2007-July 31, 2019) were retrospectively reviewed. Patients with diabetes were grouped by presence or absence of sulfonylurea therapy at hospital admission. The primary outcome was favorable neurologic status at last follow-up (modified Rankin Scale score ≤2). Variables with an unadjusted P-value of <0.20 were included in a propensity-adjusted multivariable logistic regression analysis to identify predictors of favorable outcomes. RESULTS Of 1013 aSAH patients analyzed, 129 (13%) had diabetes at admission, and 16 of these (12%) were receiving sulfonylureas. Fewer diabetic than nondiabetic patients had favorable outcomes (40% [52/129] vs. 51% [453/884], P = 0.03). Among diabetic patients, sulfonylurea use (OR 3.90, 95% CI 1.05-15.9, P = 0.046), Charlson Comorbidity Index <4 (OR 3.66, 95% CI 1.24-12.1, P = 0.02), and absence of delayed cerebral infarction (OR 4.09, 95% CI 1.20-15.5, P = 0.03) were associated with favorable outcomes in the multivariable analysis. CONCLUSIONS Diabetes was strongly associated with unfavorable neurologic outcomes. An unfavorable outcome in this cohort was mitigated by sulfonylureas, supporting some preclinical evidence of a possible neuroprotective role for these medications in aSAH. These results warrant further study on dose, timing, and duration of administration in humans.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kamila M Bond
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dara S Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kavelin Rumalla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tyler S Cole
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christopher S Graffeo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Amanda Muñoz-Casabella
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
12
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
13
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
14
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Culletta G, Almerico AM, Tutone M. Treatment of Complex Regional Pain Syndrome (CRPS): New Perspectives in the use of Sulfonamides as Modulators of P2X Receptors. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2023; 17:88-95. [PMID: 36959140 DOI: 10.2174/2772270817666230320124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Messina, 98166, Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, 90123, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, 90123, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, 90123, Italy
| |
Collapse
|
16
|
DeHoff G, Lau W. Medical management of cerebral edema in large hemispheric infarcts. Front Neurol 2022; 13:857640. [PMID: 36408500 PMCID: PMC9672377 DOI: 10.3389/fneur.2022.857640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/26/2022] [Indexed: 09/08/2024] Open
Abstract
Acute ischemic stroke confers a high burden of morbidity and mortality globally. Occlusion of large vessels of the anterior circulation, namely the intracranial carotid artery and middle cerebral artery, can result in large hemispheric stroke in ~8% of these patients. Edema from stroke can result in a cascade effect leading to local compression of capillary perfusion, increased stroke burden, elevated intracranial pressure, herniation and death. Mortality from large hemispheric stroke is generally high and surgical intervention may reduce mortality and improve good outcomes in select patients. For those patients who are not eligible candidates for surgical decompression either due timing, medical co-morbidities, or patient and family preferences, the mainstay of medical management for cerebral edema is hyperosmolar therapy. Other neuroprotectants for cerebral edema such as glibenclamide are under investigation. This review will discuss current guidelines and evidence for medical management of cerebral edema in large hemispheric stroke as well as discuss important neuromonitoring and critical care management targeted at reducing morbidity and mortality for these patients.
Collapse
Affiliation(s)
- Grace DeHoff
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
| | - Winnie Lau
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Peng Y, Yin H, Li S, Yang H. Transcriptome of pituitary function changes in rat model of high altitude cerebral edema. Genomics 2022; 114:110519. [PMID: 36347325 DOI: 10.1016/j.ygeno.2022.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
High altitude cerebral edema (HACE) is a serious subtype of acute mountain sickness (AMS). Studies have suggested that increased expression of corticotropin releasing hormone receptor 1 (CRFR1) in pituitary is related to the development of HACE, but no study has revealed the molecular landscape of pituitary function changes in this process. Rat model of HACE was established by simulating the high-altitude hypobaric hypoxia environment. Then RNA-sequencing was performed of rat pituitary gland (PG) in HACE and non-HACE groups. The function annotations, enrichment analysis, protein-protein interaction (PPI) network, chromosome location and drug repositioning of differentially expressed genes (DEGs) were explored based on the transcriptomic data. And we found pituitary secretion function was disordered in HACE, which was partly due to activated inflammation and oxidative stress. In addition, we identified potential biomarkers for early recognition of pituitary dysfunction and potential protective drugs for pituitary function in HACE.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Huachun Yin
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| |
Collapse
|
18
|
Kern KC, Wright CB, Leigh R. Global changes in diffusion tensor imaging during acute ischemic stroke and post-stroke cognitive performance. J Cereb Blood Flow Metab 2022; 42:1854-1866. [PMID: 35579236 PMCID: PMC9536124 DOI: 10.1177/0271678x221101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Post-stroke cognitive impairment is related to the effects of the acute stroke and pre-stroke brain health. We tested whether diffusion tensor imaging (DTI) can detect acute, global effects of stroke and predict post-stroke cognitive performance. Patients with stroke or TIA enrolled in a prospective cohort study were included if they had 1) at least one DTI acquisition at acute presentation, 24 hours, 5 days, or 30 days, and 2) follow-up testing with the telephone Montreal Cognitive Assessment (T-MoCA) at 30 and/or 90 days. A whole brain, white-matter skeleton excluding the infarct was used to derive mean global DTI measures for mean diffusivity (MD), fractional anisotropy (FA), free water (FW), FW-corrected MD (MDtissue), and FW-corrected FA (FAtissue). In 74 patients with ischemic stroke or TIA, there was a transient 4.2% increase in mean global FW between acute presentation and 24 hours (p = 0.024) that returned to initial values by 30 days (p = 0.03). Each acute global DTI measure was associated with 30-day T-MoCA score (n = 61, p = 0.0011-0.0076). Acute global FW, MD, FA and FAtissue were also associated with 90-day T-MoCA (n = 56, p = 0.0034-0.049). Transient global FW elevation likely reflects stroke-related interstitial edema, whereas other global DTI measures are more representative of pre-stroke brain health.
Collapse
Affiliation(s)
- Kyle C Kern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Richard Leigh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
How can imaging in acute ischemic stroke help us to understand tissue fate in the era of endovascular treatment and cerebroprotection? Neuroradiology 2022; 64:1697-1707. [PMID: 35854136 DOI: 10.1007/s00234-022-03001-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
|
20
|
Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci 2022; 16:988283. [PMID: 36061592 PMCID: PMC9434007 DOI: 10.3389/fnins.2022.988283] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is associated with increasing morbidity and has become the main cause of death and disability worldwide. Cerebral edema is a serious complication arising from ischemic stroke. It causes an increase in intracranial pressure, rapid deterioration of neurological symptoms, and formation of cerebral hernia, and is an important risk factor for adverse outcomes after stroke. To date, the detailed mechanism of cerebral edema after stroke remains unclear. This limits advances in prevention and treatment strategies as well as drug development. This review discusses the classification and pathological characteristics of cerebral edema, the possible relationship of the development of cerebral edema after ischemic stroke with aquaporin 4, the SUR1-TRPM4 channel, matrix metalloproteinase 9, microRNA, cerebral venous reflux, inflammatory reactions, and cerebral ischemia/reperfusion injury. It also summarizes research on new therapeutic drugs for post-stroke cerebral edema. Thus, this review provides a reference for further studies and for clinical treatment of cerebral edema after ischemic stroke.
Collapse
Affiliation(s)
- Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Zhe Piao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Huimin Wei
- Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Guangxian Nan,
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji,
| |
Collapse
|
21
|
Costa BBSD, Windlin IC, Koterba E, Yamaki VN, Rabelo NN, Solla DJF, Samaia da Silva Coelho AC, Telles JPM, Teixeira MJ, Figueiredo EG. Glibenclamide in aneurysmal subarachnoid hemorrhage: a randomized controlled clinical trial. J Neurosurg 2022; 137:121-128. [PMID: 34798604 DOI: 10.3171/2021.7.jns21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glibenclamide has been shown to improve outcomes in cerebral ischemia, traumatic brain injury, and subarachnoid hemorrhage (SAH). The authors sought to evaluate glibenclamide's impact on mortality and functional outcomes of patients with aneurysmal SAH (aSAH). METHODS Patients with radiologically confirmed aSAH, aged 18 to 70 years, who presented to the hospital within 96 hours of ictus were randomly allocated to receive 5 mg of oral glibenclamide for 21 days or placebo, in a modified intention-to-treat analysis. Outcomes were mortality and functional status at discharge and 6 months, evaluated using the modified Rankin Scale (mRS). RESULTS A total of 78 patients were randomized and allocated to glibenclamide (n = 38) or placebo (n = 40). Baseline characteristics were similar between groups. The mean patient age was 53.1 years, and the majority of patients were female (75.6%). The median Hunt and Hess, World Federation of Neurosurgical Societies (WFNS), and modified Fisher scale (mFS) scores were 3 (IQR 2-4), 3 (IQR 3-4), and 3 (IQR 1-4), respectively. Glibenclamide did not improve the functional outcome (mRS) after 6 months (ordinal analysis, unadjusted common OR 0.66 [95% CI 0.29-1.48], adjusted common OR 1.25 [95% CI 0.46-3.37]). Similar results were found for analyses considering the dichotomized 6-month mRS score (favorable score 0-2), as well as for the secondary outcomes of discharge mRS score (either ordinal or dichotomized), mortality, and delayed cerebral ischemia. Hypoglycemia was more frequently observed in the glibenclamide group (5.3%). CONCLUSIONS In this study, glibenclamide was not associated with better functional outcomes after aSAH. Mortality and delayed cerebral ischemia rates were also similar compared with placebo.
Collapse
|
22
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
23
|
Cai H, Ma X, Lu D, Chen L, Bian X, Zhang N, Tang W, Liu X, Li Z. Mild Hypothermia Promotes Ischemic Tolerance and Survival of Neural Stem Cell Grafts by Enhancing Global SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6503504. [PMID: 35669854 PMCID: PMC9166982 DOI: 10.1155/2022/6503504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Cerebral infarct penumbra due to hypoxia and toxin accumulation is not conducive to the transplantation of neural stem cells (NSCs), although mild hypothermia can improve the local microenvironment of the ischemic penumbra and exert neuroprotective effects. However, insufficient understanding of the molecular mechanism by which mild hypothermia protects the brain limits widespread clinical application. This study evaluated the molecular mechanism of mild hypothermia-induced brain protection from the perspective of global protein small ubiquitin-like modifier (SUMO) modification, with the aim of improving NSC transplant survival rates in the penumbra to enhance neurological function. NSCs from neonatal rats were extracted to detect the effects of hypoxia and mild hypothermia on SUMOylation modification levels, cell stemness, and hypoxia-induced injury. Overexpression and knockdown of UBC9 in NSCs were used to evaluate their ability to maintain stemness and withstand hypoxic injury. Finally, a rat middle cerebral artery occlusion (MCAO) model was used to verify the effect of mild hypothermia treatment and UBC9 overexpression on neural function of NSCs following penumbra transplantation in rats. Results showed that hypoxia and mild hypothermia promoted both the SUMOylation modification and maintenance of NSC stemness. Overexpression of UBC9 enhanced the abilities of NSCs to maintain stemness and resist hypoxic injury, while UBC9 knockdown had the opposite effect. Following transplantation into the ischemic penumbra of MCAO model rats, mild hypothermia and Ubc9-overexpressing NSCs significantly reduced cerebral infarct areas and improved neurological function. In conclusion, this study demonstrated that global protein SUMOylation is an important molecular mechanism for NSCs to tolerate hypoxia, and mild hypothermia can further increase the degree of global SUMOylation to enhance the hypoxia tolerance of NSCs, which increases their survival during transplantation in situ and ability to perform nerve repair in the penumbra of cerebral infarction.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Dading Lu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Liangyu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Nan Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Zhiqing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| |
Collapse
|
24
|
Decompressive Craniectomy for Stroke: Who, When, and How. Neurol Clin 2022; 40:321-336. [DOI: 10.1016/j.ncl.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Yang X, Wang M, Zhou Q, Bai Y, Liu J, Yang J, Li L, Li G, Luo L. Macamide B Pretreatment Attenuates Neonatal Hypoxic-Ischemic Brain Damage of Mice Induced Apoptosis and Regulates Autophagy via the PI3K/AKT Signaling Pathway. Mol Neurobiol 2022; 59:2776-2798. [PMID: 35190953 DOI: 10.1007/s12035-022-02751-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
Lepidium meyenii (maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb possesses antioxidant and antiapoptotic activities, enhances autophagy functions, prevents cell death, and protects neurons from ischemic damage. Macamide B, an effective active ingredient of maca, exerts a neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), but the mechanism underlying its neuroprotective effect is not yet known. The purpose of this study was to explore the effect of macamide B on HIBD-induced autophagy and apoptosis and its potential neuroprotective mechanism. The modified Rice-Vannucci method was used to induce HIBD in 7-day-old (P7) macamide B- and vehicle-pretreated pups. TTC staining was performed to evaluate the cerebral infarct volume in pups, the brain water content was measured to evaluate the neurological function of pups, neurobehavioural testing was conducted to assess functional recovery after HIBD, TUNEL and FJC staining was performed to detect cellular autophagy and apoptosis, and Western blot analysis was used to detect the levels of proteins in the pro-survival phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway and autophagy and apoptosis-related proteins. Macamide B pretreatment significantly decreases brain damage and improves the recovery of neural function after HIBD. At the same time, macamide B pretreatment activates the PI3K/AKT signaling pathway after HIBD, enhances autophagy, and reduces hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of the PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that a macamide B pretreatment might regulate autophagy through the PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yanxian Bai
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Medical Association, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Alquisiras-Burgos I, Franco-Pérez J, Rubio-Osornio M, Aguilera P. The short form of the SUR1 and its functional implications in the damaged brain. Neural Regen Res 2022; 17:488-496. [PMID: 34380876 PMCID: PMC8504400 DOI: 10.4103/1673-5374.320967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonylurea receptor (SUR) belongs to the adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter family; however, SUR is associated with ion channels and acts as a regulatory subunit determining the opening or closing of the pore. Abcc8 and Abcc9 genes code for the proteins SUR1 and SUR2, respectively. The SUR1 transcript encodes a protein of 1582 amino acids with a mass around 140–177 kDa expressed in the pancreas, brain, heart, and other tissues. It is well known that SUR1 assembles with Kir6.2 and TRPM4 to establish KATP channels and non-selective cation channels, respectively. Abbc8 and 9 are alternatively spliced, and the resulting transcripts encode different isoforms of SUR1 and SUR2, which have been detected by different experimental strategies. Interestingly, the use of binding assays to sulfonylureas and Western blotting has allowed the detection of shorter forms of SUR (~65 kDa). Identity of the SUR1 variants has not been clarified, and some authors have suggested that the shorter forms are unspecific. However, immunoprecipitation assays have shown that SUR2 short forms are part of a functional channel even coexisting with the typical forms of the receptor in the heart. This evidence confirms that the structure of the short forms of the SURs is fully functional and does not lose the ability to interact with the channels. Since structural changes in short forms of SUR modify its affinity to ATP, regulation of its expression might represent an advantage in pathologies where ATP concentrations decrease and a therapeutic target to induce neuroprotection. Remarkably, the expression of SUR1 variants might be induced by conditions associated to the decrease of energetic substrates in the brain (e.g. during stroke and epilepsy). In this review, we want to contribute to the knowledge of SUR1 complexity by analyzing evidence that shows the existence of short SUR1 variants and its possible implications in brain function.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| |
Collapse
|
27
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
28
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord 2021; 14:17562864211049208. [PMID: 34671423 PMCID: PMC8521409 DOI: 10.1177/17562864211049208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can be divided into a primary and secondary phase. In the primary phase, hematoma volume is evaluated and therapies are focused on reducing hematoma expansion. In the secondary, neuroprotective phase, complex systemic inflammatory cascades, direct cellular toxicity, and blood-brain barrier disruption can result in worsening perihematomal edema that can adversely affect functional outcome. To date, all major randomized phase 3 trials for ICH have targeted primary phase hematoma volume and incorporated clot evacuation, intensive blood pressure control, and hemostasis. Reasons for this lack of clinical efficacy in the major ICH trials may be due to the lack of therapeutics involving mitigation of secondary injury and inflexible trial design that favors unilateral mechanisms in a complex pathophysiology. Potential pathophysiological targets for attenuating secondary injury are highlighted in this review and include therapies increasing calcium, antagonizing microglial activation, maintaining macrophage M1 versus M2 balance by decreasing M1 signaling, aquaporin inhibition, NKCCl inhibition, endothelin receptor inhibition, Sur1-TRPM4 inhibition, matrix metalloproteinase inhibition, and sphingosine-1-phosphate receptor modulation. Future clinical trials in ICH focusing on secondary phase injury and, potentially implementing adaptive trial design approaches with multifocal targets, may improve insight into these mechanisms and provide potential therapies that may improve survival and functional outcome.
Collapse
Affiliation(s)
- Wendy Bautista
- Center for Advanced Preclinical Research (CAPR), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P David Adelson
- Division of Pediatric Neurosurgery, Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Nathan Bicher
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Marios Themistocleous
- Department of Neurosurgery, Pediatric Hospital of Athens, Agia Sophia, Athens, Greece
| | - Georgios Tsivgoulis
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, 110 Irving Street, NW, Rm 4B42, Washington, DC 20010, USA
| |
Collapse
|
30
|
The effect of Glibenclamide on somatosensory evoked potentials after cardiac arrest in rats. Neurocrit Care 2021; 36:612-620. [PMID: 34599418 DOI: 10.1007/s12028-021-01350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Science continues to search for a neuroprotective drug therapy to improve outcomes after cardiac arrest (CA). The use of glibenclamide (GBC) has shown promise in preclinical studies, but its effects on neuroprognostication tools are not well understood. We aimed to investigate the effect of GBC on somatosensory evoked potential (SSEP) waveform recovery post CA and how this relates to the early prediction of functional outcome, with close attention to arousal and somatosensory recovery, in a rodent model of CA. METHODS Sixteen male Wistar rats were subjected to 8-min asphyxia CA and assigned to GBC treatment (n = 8) or control (n = 8) groups. GBC was administered as a loading dose of 10 μg/kg intraperitoneally 10 min after the return of spontaneous circulation, followed by a maintenance dosage of 1.6 μg/kg every 8 h for 24 h. SSEPs were recorded from baseline until 150 min following CA. Coma recovery, arousal, and brainstem function, measured by subsets of the neurological deficit score (NDS), were compared between both groups. SSEP N10 amplitudes were compared between the two groups at 30, 60, 90, and 120 min post CA. RESULTS Rats treated with GBC had higher sub-NDS scores post CA, with improved arousal and brainstem function recovery (P = 0.007). Both groups showed a gradual improvement of SSEP N10 amplitude over time, from 30 to 120 min post CA. Rats treated with GBC showed significantly better SSEP recovery at every time point (P < 0.001 for 30, 60, and 90 min; P = 0.003 for 120 min). In the GBC group, the N10 amplitude recovered to baseline by 120 min post CA. Quantified Cresyl violet staining revealed a significantly greater percentage of damage in the control group compared with the GBC treatment group (P = 0.004). CONCLUSIONS Glibenclamide improves coma recovery, arousal, and brainstem function after CA with decreased number of ischemic neurons in a rat model. GBC improves SSEP recovery post CA, with N10 amplitude reaching the baseline value by 120 min, suggesting early electrophysiologic recovery with this treatment. This medication warrants further exploration as a potential drug therapy to improve functional outcomes in patients after CA.
Collapse
|
31
|
Dhar R. Commentary on "Midline Shift Greater than 3 mm Independently Predicts Outcome After Ischemic Stroke". Neurocrit Care 2021; 36:18-20. [PMID: 34580827 DOI: 10.1007/s12028-021-01355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Rajat Dhar
- Division of Neurocritical Care, Department of Neurology, Washington University in Saint Louis School of Medicine, 660 S Euclid Avenue, Campus Box 8111, Saint Louis, MO, USA.
| |
Collapse
|
32
|
Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm Sin B 2021; 11:1767-1788. [PMID: 34386320 PMCID: PMC8343119 DOI: 10.1016/j.apsb.2020.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.
Collapse
Key Words
- AEPO, asialo-erythropoietin
- APOE, apolipoprotein E
- BBB, blood‒brain barrier
- BCECs, brain capillary endothelial cells
- Blood‒brain barrier
- CAT, catalase
- COX-1, cyclooxygenase-1
- CXCR-4, C-X-C chemokine receptor type 4
- Ce-NPs, ceria nanoparticles
- CsA, cyclosporine A
- DAMPs, damage-associated molecular patterns
- GFs, growth factors
- GPIIb/IIIa, glycoprotein IIb/IIIa
- HMGB1, high mobility group protein B1
- Hb, hemoglobin
- ICAM-1, intercellular adhesion molecule-1
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Ischemic cascade
- LFA-1, lymphocyte function-associated antigen-1
- LHb, liposomal Hb
- MCAO, middle cerebral artery occlusion
- MMPs, matrix metalloproteinases
- MSC, mesenchymal stem cell
- NF-κB, nuclear factor-κB
- NGF, nerve growth factor
- NMDAR, N-methyl-d-aspartate receptor
- NOS, nitric oxide synthase
- NPs, nanoparticles
- NSCs, neural stem cells
- Nanomedicine
- Neuroprotectant
- PBCA, poly-butylcyanoacrylate
- PCMS, poly (chloromethylstyrene)
- PEG, poly-ethylene-glycol
- PEG-PLA, poly (ethylene-glycol)-b-poly (lactide)
- PLGA NPs, poly (l-lactide-co-glycolide) nanoparticles
- PSD-95, postsynaptic density protein-95
- PSGL-1, P-selectin glycoprotein ligand-1
- RBCs, red blood cells
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp
- ROS, reactive oxygen species
- Reperfusion
- SDF-1, stromal cell-derived factor-1
- SHp, stroke homing peptide
- SOD, superoxide dismutase
- SUR1-TRPM4, sulfonylurea receptor 1-transient receptor potential melastatin-4
- Stroke
- TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl
- TIA, transient ischemic attack
- TNF-α, tumor necrosis factor-α
- Thrombolytics
- cRGD, cyclic Arg-Gly-Asp
- e-PAM-R, arginine-poly-amidoamine ester
- iNOS, inducible nitric oxide synthase
- miRNAs, microRNAs
- nNOS, neuron nitric oxide synthase
- siRNA, small interfering RNA
Collapse
|
33
|
Abstract
Traumatic brain injury is a devastating, life-changing event in most cases. After the primary brain insult, it is helpful to use evidence-based monitoring techniques to guide implementation of essential interventions to minimize secondary injury and thereby improve patient outcomes. An update on multimodal neuromonitoring is provided in this narrative review, with discussion of tools and techniques currently used in the treatment of patients with brain injury. Neuroprotective treatments, from the well-studied targeted temperature management to new potential therapeutics under investigation, such as glyburide, also are presented.
Collapse
Affiliation(s)
- Maureen Scarboro
- Maureen Scarboro is Acute Care Nurse Practitioner, Neurosurgery, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 S Greene St, Baltimore, MD 21201
| | - Karen A McQuillan
- Karen A. McQuillan is Lead Clinical Nurse Specialist, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
34
|
Ji C, Yu X, Xu W, Lenahan C, Tu S, Shao A. The role of glymphatic system in the cerebral edema formation after ischemic stroke. Exp Neurol 2021; 340:113685. [PMID: 33676917 DOI: 10.1016/j.expneurol.2021.113685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Cerebral edema following ischemic stroke is predictive of the severity of the eventual stroke related damage, however the effective treatment is limited. The glymphatic system is a recently identified waste clearance pathway in the brain, found in the paravascular space and mainly composed of astrocytes and their aquaporin-4 (AQP4) water channels. In this review, we primarily focus on the role of the glymphatic system in the formation of cerebral edema after ischemic stroke. There is still no definite conclusion whether the influx of cerebrospinal fluid (CSF) in the glymphatic system is increased or not after ischemic stroke. However, the reduced interstitial fluid (ISF) clearance after ischemic stroke is definite. Additionally, AQP4 as the most important part of glymphatic system plays a complex bimodal in cerebral edema after ischemic stroke. Most of the research has found that AQP4 deletion in animals reduces cerebral edema after acute ischemic stroke compared with wild type animal models. The mislocalization of astrocytic AQP4 was also presented after ischemic stroke. As the cerebral edema after ischemic stroke is difficult to treat, we discuss several potential treatment targets related to glymphatic system. More studies are needed to explore the role of glymphatic system in the formation of cerebral edema after ischemic stroke and develop probable treatment strategies.
Collapse
Affiliation(s)
- Caihong Ji
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Yu
- Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Griepp DW, Lee J, Moawad CM, Davati C, Runnels J, Fiani B. BIIB093 (intravenous glibenclamide) for the prevention of severe cerebral edema. Surg Neurol Int 2021; 12:80. [PMID: 33767884 PMCID: PMC7982107 DOI: 10.25259/sni_933_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Vasogenic edema in the setting of acute ischemic stroke can be attributed to the opening of transient receptor potential 4 channels, which are expressed in the setting of injury and regulated by sulfonylurea receptor 1 (SUR1) proteins. Glibenclamide, also known as glyburide, RP-1127, Cirara, and BIIB093, is a second-generation sulfonylurea that binds SUR1 at potassium channels and may significantly reduce cerebral edema following stroke, as evidenced by recent clinical trials. This review provides a comprehensive analysis of clinical considerations of glibenclamide use and current patient outcomes when administered in the setting of acute ischemic stroke to reduce severe edema. Methods: National databases (MEDLINE, EMBASE, Cochrane, and Google scholar databases) were searched to identify studies that reported on the clinical outcomes of glibenclamide administered immediately following acute ischemic stroke. Results: The pharmacological mechanism of glibenclamide was reviewed in depth as well as the known indications and contraindications to receiving treatment. Eight studies were identified as having meaningful clinical outcome data, finding statistically significant differences in glibenclamide treatment groups ranging from matrix metalloproteinase-9 serum levels, midline shift, modified Rankin Scores, National Institute of Health Stroke Score, and mortality endpoints. Conclusion: Studies analyzing the GAMES-Pilot and GAMES-PR trials suggest that glibenclamide has a moderate, however, measurable effect on intermediate biomarkers and clinical endpoints. Meaningful conclusions are limited by the small sample size of patients studied.
Collapse
Affiliation(s)
- Daniel W Griepp
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Jason Lee
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Christina M Moawad
- Department of Biomedical Engineering, Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, Champaign, Illinois, United States
| | - Cyrus Davati
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Juliana Runnels
- School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, United States
| |
Collapse
|
36
|
HIV-1 Vpr-Induced Proinflammatory Response and Apoptosis Are Mediated through the Sur1-Trpm4 Channel in Astrocytes. mBio 2020; 11:mBio.02939-20. [PMID: 33293383 PMCID: PMC8534293 DOI: 10.1128/mbio.02939-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Successful treatment of HIV-infected patients with combinational antiretroviral therapies (cART) can now prolong patients' lives to nearly normal life spans. However, the new challenge faced by many of those HIV-infected patients is chronic neuroinflammation and neurotoxicity that often leads to HIV-associated neurocognitive disorders (HAND). However, the mechanism of neuropathogenesis underlying HAND, especially in those who are under cART, is not well understood. HAND is typically characterized by HIV-mediated glial neuroinflammation and neurotoxicity. However, the severity of HAND does not always correlate with HIV-1 viral load but, rather, with the extent of glial activation, suggesting that other HIV-associated factors might contribute to HAND. HIV-1 viral protein R (Vpr) could be one of those viral factors because of its association with neuroinflammation and neurotoxicity. The objective of this study was to delineate the specific roles of HIV-1 infection and Vpr in the activation of neuroinflammation and neurotoxicity, and the possible relationships with the Sur1-Trpm4 channel that contributes to neuroinflammation and neuronal death. Here, we show that HIV-1 expression correlates with activation of proinflammatory markers (TLR4, TNF-α, and NF-κB) and the Sur1-Trpm4 channel in astrocytes of HIV-infected postmortem human and transgenic Tg26 mouse brain tissues. We further show that Vpr alone activates the same set of proinflammatory markers and Sur1 in a glioblastoma SNB19 cell line that is accompanied by apoptosis. The Sur1 inhibitor glibenclamide significantly reduced Vpr-induced apoptosis. Together, our data suggest that HIV-1 Vpr-induced proinflammatory response and apoptosis are mediated at least in part through the Sur1-Trpm4 channel in astrocytes.IMPORTANCE Effective antiretroviral therapies can now prolong patients' lives to nearly normal life span. The current challenge faced by many HIV-infected patients is chronic neuroinflammation and neurotoxicity that contributes to HIV-associated neurocognitive disorders (HAND). We show here that the expression of HIV-1 infection and Vpr correlates with the activation of proinflammatory markers (Toll-like receptor 4 [TLR4], tumor necrosis factor alpha [TNF-α], and NF-κB) and the sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel in astrocytes of brain tissues. We further show that an FDA-approved Sur1 inhibitory drug called glibenclamide significantly ameliorates apoptotic astrocytic cell death caused by HIV-1 Vpr, which could potentially open the possibility of repurposing glibenclamide for treating HAND.
Collapse
|
37
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Keep RF, Jones HC, Drewes LR. This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 2020; 17:20. [PMID: 32138786 PMCID: PMC7059280 DOI: 10.1186/s12987-020-00181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research published in 2019, as well as addressing current controversies and pressing needs. Topics include recent advances related to: the cerebral endothelium and the neurovascular unit; the choroid plexus, arachnoid membrane; cerebrospinal fluid and the glymphatic hypothesis; the impact of disease states on brain barriers and brain fluids; drug delivery to the brain; and translation of preclinical data to the clinic. This editorial also mourns the loss of two important figures in the field, Malcolm B. Segal and Edward G. Stopa.
Collapse
Affiliation(s)
- Richard F. Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | | | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN 55812 USA
| |
Collapse
|
40
|
Lundbye J, Badjatia N, Polderman KH, Lyden P. Current Advances in the Use of Therapeutic Hypothermia. Ther Hypothermia Temp Manag 2020; 10:2-5. [PMID: 31934833 DOI: 10.1089/ther.2019.29070.jjl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Justin Lundbye
- The Greater Waterbury Health Network, Waterbury, Connecticut
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kees H Polderman
- Basildon and Thurrock University Hospitals, Anglia Ruskin School of Medicine, London-Essex, United Kingdom
| | - Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
41
|
Badjatia N, Nichol G, Gupta R, Andrews P. Studies Targeting Stroke. Ther Hypothermia Temp Manag 2020; 10:11-16. [PMID: 31928501 DOI: 10.1089/ther.2019.29069.njb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Graham Nichol
- University of Washington-Harborview Center for Prehospital Emergency Care, Seattle, Washington
| | - Rishi Gupta
- Cerebrovascular and Endovascular Neurosurgery, Wellstar Health System, Kennestone Hospital, Atlanta, Georgia
| | - Peter Andrews
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
42
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|