1
|
Kouridaki ME, Gillespie J, Robinson J, Mathie T, Bain L, McArthur D, Morrison A, Greenslade DB, Papadourakis M, Maj K, Cameron K, Turner D, Webster SP, Wear MA, Doughty-Shenton D, Hulme AN, Michel J. Optimization of Cyclophilin B-Targeted Tri-vector Inhibitors for Novel MASH Treatments. J Med Chem 2025; 68:6815-6831. [PMID: 40074291 PMCID: PMC11956012 DOI: 10.1021/acs.jmedchem.5c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Cyclophilins have been implicated in the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). Pharmacological inhibition of the cyclophilin B isoform has the potential to attenuate liver fibrosis in MASH, but current cyclophilin inhibitors in clinical trials lack isoform selectivity. We previously reported the novel tri-vector small-molecule inhibitor 1 that exhibited improved subtype selectivity by simultaneously engaging three pockets on the surface of cyclophilins. Here, we present structure-activity relationships that address genotoxicity concerns, enhance subtype selectivity, improve pharmaceutical properties, and demonstrate strong efficacy in a MASH cellular model. Lead compound 11 is a potent cyclophilin B inhibitor with an encouraging pharmacokinetic profile suitable for further development.
Collapse
Affiliation(s)
- Maria-Eleni Kouridaki
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | | | - John Robinson
- BioAscent
Discovery Ltd., Newhouse, Scotland Lanarkshire ML1 5UH, U.K.
| | - Tanya Mathie
- BioAscent
Discovery Ltd., Newhouse, Scotland Lanarkshire ML1 5UH, U.K.
| | - Laura Bain
- BioAscent
Discovery Ltd., Newhouse, Scotland Lanarkshire ML1 5UH, U.K.
| | - Duncan McArthur
- BioAscent
Discovery Ltd., Newhouse, Scotland Lanarkshire ML1 5UH, U.K.
| | - Angus Morrison
- BioAscent
Discovery Ltd., Newhouse, Scotland Lanarkshire ML1 5UH, U.K.
| | - Daniel B. Greenslade
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Michail Papadourakis
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Kasia Maj
- Cytochroma
Ltd., Roslin Innovation Centre, Easter Bush
Estate, Edinburgh, Scotland EH25 9RG, U.K.
| | - Kate Cameron
- Cytochroma
Ltd., Roslin Innovation Centre, Easter Bush
Estate, Edinburgh, Scotland EH25 9RG, U.K.
| | - Darryl Turner
- Concept
Life Sciences Ltd., Nine,
9 Little France Road, Edinburgh Bioquarter, Edinburgh, Scotland EH16
4UX, U.K.
| | - Scott P. Webster
- Centre for
Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland EH16
4TJ, U.K.
| | - Martin A. Wear
- The Edinburgh
Protein Production Facility (EPPF), University
of Edinburgh, Level 3
Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh, Scotland EH9 3FF, U.K.
| | - Dahlia Doughty-Shenton
- Centre for
Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh Bioquarter, Edinburgh, Scotland EH16 4UU, U.K.
| | - Alison N. Hulme
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Julien Michel
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.
| |
Collapse
|
2
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
4
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
5
|
Bansal R, Torres M, Hunt M, Wang N, Chatzopoulou M, Manchanda M, Taddeo EP, Shu C, Shirihai OS, Bachar-Wikstrom E, Wikstrom JD. Role of the mitochondrial protein cyclophilin D in skin wound healing and collagen secretion. JCI Insight 2024; 9:e169213. [PMID: 38564292 PMCID: PMC11141914 DOI: 10.1172/jci.insight.169213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.
Collapse
Affiliation(s)
- Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nuoqi Wang
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Margarita Chatzopoulou
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Evan P. Taddeo
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Cynthia Shu
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Orian S. Shirihai
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Costache DO, Blejan H, Cojocaru DL, Ioniță GA, Poenaru M, Constantin MM, Costache AC, Căruntu C, Balaban DV, Costache RS. Intersecting Pathways: Nonalcoholic Fatty Liver Disease and Psoriasis Duet-A Comprehensive Review. Int J Mol Sci 2024; 25:2660. [PMID: 38473907 PMCID: PMC10932248 DOI: 10.3390/ijms25052660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic, immune-mediated, inflammatory disease that has a major impact on patients' quality of life. Common psoriasis-associated comorbidities include cardiovascular diseases, psoriatic arthritis, inflammatory bowel syndromes, type-2 diabetes, and metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD) is affecting a substantial portion of the population and is closely linked with psoriasis. The interplay involves low-grade chronic inflammation, insulin resistance, and genetic factors. The review presents the pathophysiological connections between psoriasis and nonalcoholic fatty liver disease, emphasizing the role of cytokines, adipokines, and inflammatory cascades. The "hepato-dermal axis" is introduced, highlighting how psoriatic inflammation potentiates hepatic inflammation and vice versa. According to the new guidelines, the preliminary examination for individuals with psoriasis should encompass evaluations of transaminase levels and ultrasound scans as part of the initial assessment for this cohort. Considering the interplay, recent guidelines recommend screening for NAFLD in moderate-to-severe psoriasis cases. Treatment implications arise, particularly with medications impacting liver function. Understanding the intricate relationship between psoriasis and NAFLD provides valuable insights into shared pathogenetic mechanisms. This knowledge has significant clinical implications, guiding screening practices, treatment decisions, and the development of future therapeutic approaches for these chronic conditions.
Collapse
Affiliation(s)
- Daniel Octavian Costache
- Discipline of Dermatology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.O.C.); (M.M.C.)
- Dermatology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (H.B.); (M.P.)
| | - Horia Blejan
- Dermatology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (H.B.); (M.P.)
| | - Damian Lucian Cojocaru
- Gastroenterology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (D.L.C.); (G.A.I.); (D.V.B.); (R.S.C.)
| | - Georgiana Alexandra Ioniță
- Gastroenterology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (D.L.C.); (G.A.I.); (D.V.B.); (R.S.C.)
| | - Marcela Poenaru
- Dermatology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (H.B.); (M.P.)
| | - Maria Magdalena Constantin
- Discipline of Dermatology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.O.C.); (M.M.C.)
- 2nd Dermatology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Andrei Cătălin Costache
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Căruntu
- Discipline of Internal Medicine and Gastroenterology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Vasile Balaban
- Gastroenterology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (D.L.C.); (G.A.I.); (D.V.B.); (R.S.C.)
- Discipline of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Raluca Simona Costache
- Gastroenterology Department, Carol Davila Central Emergency Military University Hospital, 010825 Bucharest, Romania; (D.L.C.); (G.A.I.); (D.V.B.); (R.S.C.)
- Discipline of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Academy of Romanian Scientists, 050091 Bucharest, Romania
| |
Collapse
|
7
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
8
|
Torosian K, Lal E, Kavanaugh A, Loomba R, Ajmera V, Guma M. Psoriatic disease and non-alcoholic fatty liver disease shared pathogenesis review. Semin Arthritis Rheum 2023; 59:152165. [PMID: 36716599 PMCID: PMC9992353 DOI: 10.1016/j.semarthrit.2023.152165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
Psoriatic disease (PD) and non-alcoholic fatty liver disease (NAFLD) potentially share disease pathways given the numerous inflammatory pathways involved in both diseases and a higher prevalence of NAFLD in PD patients. Metabolic syndrome and obesity are a key link between the two diseases, but even when controlling for this, associations between both diseases are still seen. Therapeutics that impact metabolic or inflammatory pathways may be impactful in both PD and NAFLD. In this review, we describe common inflammatory pathways contributing to both PD and NAFLD and critically review the potential impact of treatments for and on both diseases.
Collapse
Affiliation(s)
- Kelly Torosian
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Esha Lal
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA; Division of Epidemiology, Department of Family and Preventative Medicine, University of California at San Diego, La Jolla, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA.
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain; San Diego VA Healthcare Service, San Diego, CA, 92161, USA.
| |
Collapse
|
9
|
Yang H, Yao W, Yang J. Overview of the development of HBV small molecule inhibitors. Eur J Med Chem 2023; 249:115128. [PMID: 36709647 DOI: 10.1016/j.ejmech.2023.115128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.
Collapse
Affiliation(s)
- Huihui Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Weiwei Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| |
Collapse
|
10
|
Remenchik E, Mayo PR, Hobbs TM, Greytok JA, Foster EP, Zhao C, Ure D, Trepanier DJ, Foster RT. Effect of a High-Fat Meal on Single-Dose Rencofilstat (CRV431) Oral Bioavailability in Healthy Human Subjects. Clin Pharmacol Drug Dev 2023; 12:287-293. [PMID: 36251165 DOI: 10.1002/cpdd.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Rencofilstat (RCF) is a novel cyclophilin inhibitor under development for the treatment of nonalcoholic steatohepatitis and hepatocellular carcinoma. This phase 1, randomized, open-label study in healthy participants assessed the relative bioavailability of a single dose of RCF 225-mg soft gelatin capsules in both fasted and high-fat conditions. Forty-four participants were enrolled to either the fasted (n = 24) or the high-fat fed (n = 20) arm. Noncompartmental pharmacokinetics were evaluated following a single 225-mg oral dose. Administration of RCF with a high-fat meal led to increases in maximum concentration, area under the concentration-time curve (AUC) from time 0 to 24 hours, and AUC from time 0 to infinity fed-to-fasted geometric mean ratios of 102.2%, 114.5%, and 132.9%, respectively. All AUC geometric mean ratios were outside of the 80% to 125% range, suggesting that a high-fat meal can increase the extent of RCF exposure. Time to maximum concentration increased from 1.5 to 1.8 hours in the fasted and high-fat groups, respectively, suggesting slightly delayed absorption. High fat intake may delay gastric emptying while increasing the absorption and bioavailability of RCF. No treatment-emergent adverse events were observed in the fasted group, and 1 treatment-emergent adverse event occurred in the high-fat meal group. The differences in observed whole-blood concentrations are unlikely to have clinically relevant effects given the wide therapeutic index of RCF demonstrated in previous phase 1 studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daren Ure
- Hepion Pharmaceuticals, Edison, New Jersey, USA
| | | | | |
Collapse
|
11
|
Harrison SA, Mayo PR, Hobbs TM, Canizares C, Foster EP, Zhao C, Ure DR, Trepanier DJ, Greytok JA, Foster RT. Rencofilstat, a cyclophilin inhibitor: A phase 2a, multicenter, single-blind, placebo-controlled study in F2/F3 NASH. Hepatol Commun 2022; 6:3379-3392. [PMID: 36271849 PMCID: PMC9701462 DOI: 10.1002/hep4.2100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Rencofilstat (RCF) demonstrated antifibrotic effects in preclinical models and was safe and well tolerated in Phase 1 studies. The aim of this Phase 2a study was safety, tolerability, pharmacokinetics, and exploration of efficacy biomarkers in subjects with nonalcoholic steatohepatitis (NASH). This Phase 2a, multicenter, single-blind, placebo-controlled study randomized 49 presumed F2/F3 subjects to RCF 75 mg once daily (QD), RCF 225 mg QD, or placebo for 28 days. Primary safety and tolerability endpoints were explored using descriptive statistics with post hoc analyses comparing active to placebo groups. Pharmacokinetics were evaluated using population pharmacokinetics methods. Efficacy was explored using biomarkers, transcriptomics, and lipidomics. RCF was safe and well tolerated, with no safety signals identified. The most frequently reported treatment-emergent adverse events were constipation, diarrhea, back pain, dizziness, and headache. No clinically significant changes in laboratory parameters were observed, and RCF pharmacokinetics were unchanged in subjects with NASH. Alanine transaminase (ALT) reduction was greater in active subjects than in placebo groups. Nonparametric analysis suggested that ALT reductions were statistically different in the 225-mg cohort compared with matching placebo: -16.3 ± 25.5% versus -0.7 ± 13.4%, respectively. ProC3 and C6M reduction was statistically significant in groups having baseline ProC3 > 15.0 ng/ml. RCF was safe and well tolerated after 28 days in subjects with presumed F2/F3 NASH. Presence of NASH did not alter its pharmacokinetics. Reductions in ALT, ProC3, and C6M suggest direct antifibrotic effects with longer treatment duration. Reductions in key collagen genes support a mechanism of action via suppression and/or regression of collagen deposition. Conclusion: These results support advancement of rencofilstat into a larger and longer Phase 2b study.
Collapse
Affiliation(s)
- Stephen A. Harrison
- Radcliffe Department of MedicineUniversity of Oxford, Pinnacle Clinical ResearchLive OakTexasUSA
| | - Patrick R. Mayo
- Research and DevelopmentHepion Pharmaceuticals, Inc.EdmontonAlbertaCanada
| | - Todd M. Hobbs
- Clinical, Medical and RegulatoryHepion Pharmaceuticals, Inc.EdisonNew JerseyUSA
| | - Carlos Canizares
- Clinical, Medical and RegulatoryHepion Pharmaceuticals, Inc.EdisonNew JerseyUSA
| | - Erin P. Foster
- Research and DevelopmentHepion Pharmaceuticals, Inc.EdmontonAlbertaCanada
| | - Caroline Zhao
- Research and DevelopmentHepion Pharmaceuticals, Inc.EdmontonAlbertaCanada
| | - Daren R. Ure
- Research and DevelopmentHepion Pharmaceuticals, Inc.EdmontonAlbertaCanada
| | | | - Jill A. Greytok
- Clinical, Medical and RegulatoryHepion Pharmaceuticals, Inc.EdisonNew JerseyUSA
| | - Robert T. Foster
- Research and DevelopmentHepion Pharmaceuticals, Inc.EdmontonAlbertaCanada
| |
Collapse
|
12
|
Haleckova A, Benek O, Zemanová L, Dolezal R, Musilek K. Small-molecule inhibitors of cyclophilin D as potential therapeutics in mitochondria-related diseases. Med Res Rev 2022; 42:1822-1855. [PMID: 35575048 DOI: 10.1002/med.21892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/01/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Cyclophilin D (CypD) is a key regulator of mitochondrial permeability transition pore (mPTP) opening. This pathophysiological phenomenon is associated with the development of several human diseases, including ischemia-reperfusion injury and neurodegeneration. Blocking mPTP opening through CypD inhibition could be a novel and promising therapeutic approach for these conditions. While numerous CypD inhibitors have been discovered to date, none have been introduced into clinical practice, mostly owing to their high toxicity, unfavorable pharmacokinetics, and low selectivity for CypD over other cyclophilins. This review summarizes current knowledge of CypD inhibitors, with a particular focus on small-molecule compounds with regard to their in vitro activity, their selectivity for CypD, and their binding mode within the enzyme's active site. Finally, approaches for improving the molecular design of CypD inhibitors are discussed.
Collapse
Affiliation(s)
- Annamaria Haleckova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Hradec Kralove, Czech Republic
| | - Lucie Zemanová
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Chew NWS, Ng CH, Truong E, Noureddin M, Kowdley KV. Nonalcoholic Steatohepatitis Drug Development Pipeline: An Update. Semin Liver Dis 2022; 42:379-400. [PMID: 35709720 DOI: 10.1055/a-1877-9656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a burgeoning global health crisis that mirrors the obesity pandemic. This global health crisis has stimulated active research to develop novel NASH pharmacotherapies targeting dysregulated inflammatory, cellular stress, and fibrogenetic processes that include (1) metabolic pathways to improve insulin sensitivity, de novo lipogenesis, and mitochondrial utilization of fatty acids; (2) cellular injury or inflammatory targets that reduce inflammatory cell recruitment and signaling; (3) liver-gut axis targets that influence bile acid enterohepatic circulation and signaling; and (4) antifibrotic targets. In this review, we summarize several of the therapeutic agents that have been studied in phase 2 and 3 randomized trials. In addition to reviewing novel therapeutic drugs targeting nuclear receptor pathways, liver chemokine receptors, liver lipid metabolism, lipotoxicity or cell death, and glucagon-like peptide-1 receptors, we also discuss the rationale behind the use of combination therapy and the lessons learned from unsuccessful or negative clinical trials.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Fatty Liver Program, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, Washington
| |
Collapse
|
14
|
Singh S, Ganguly U, Pal S, Chandan G, Thakur R, Saini RV, Chakrabarti SS, Agrawal BK, Chakrabarti S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson's disease. Eur J Pharmacol 2022; 929:175129. [PMID: 35777442 DOI: 10.1016/j.ejphar.2022.175129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
The development of neuroprotective drugs targeting mitochondria could be an important strategy in combating the progressive clinical course of Parkinson's disease. In the current study, we demonstrated that in SH-SY5Y cells (human dopaminergic neuroblastoma cell line), rotenone caused a dose-dependent (0.25-1 μM) and time-dependent (up to 48 h) loss of cell viability and a loss of cellular ATP content with mitochondrial membrane depolarization and an increased formation of reactive oxygen species; all these processes were markedly prevented by the mitochondrial permeability transition pore blocker cyclosporine A, which did not affect complex I inhibition by rotenone. The nuclear morphology of rotenone-treated cells for 48 h indicated the presence of both necrosis and apoptosis. We then examined the effects of cyclosporine A on the rotenone-induced model of Parkinson's disease in Wistar rats. Cyclosporine A significantly improved the motor deficits and prevented the loss of nigral dopaminergic neurons projecting into the striatum in rotenone-treated rats. Being a marketed immuno-suppressive drug, cyclosporine A should be further evaluated for its putative neuroprotective action in Parkinson's disease.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Soumya Pal
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India; Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Gourav Chandan
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Rahul Thakur
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bimal K Agrawal
- Department of Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India.
| |
Collapse
|
15
|
Zhao M, Xie H, Shan H, Zheng Z, Li G, Li M, Hong L. Development of Thyroid Hormones and Synthetic Thyromimetics in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:1102. [PMID: 35163026 PMCID: PMC8835192 DOI: 10.3390/ijms23031102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing liver disease in the world. Despite targeted agents which are needed to provide permanent benefits for patients with NAFLD, no drugs have been approved to treat NASH. Thyroid hormone is an important signaling molecule to maintain normal metabolism, and in vivo and vitro studies have shown that regulation of the 3,5,3'-triiodothyronine (T3)/ thyroid hormone receptor (TR) axis is beneficial not only for metabolic symptoms but also for the improvement of NAFLD and even for the repair of liver injury. However, the non-selective regulation of T3 to TR subtypes (TRα/TRβ) could cause unacceptable side effects represented by cardiotoxicity. To avoid deleterious effects, TRβ-selective thyromimetics were developed for NASH studies in recent decades. Herein, we will review the development of thyroid hormones and synthetic thyromimetics based on TR selectivity for NAFLD, and analyze the role of TR-targeted drugs for the treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Huazhong Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Hao Shan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Zhihua Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Guofeng Li
- Health Science Centre, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China;
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| |
Collapse
|
16
|
Balak DMW, Piaserico S, Kasujee I. Non-Alcoholic Fatty Liver Disease (NAFLD) in Patients with Psoriasis: A Review of the Hepatic Effects of Systemic Therapies. PSORIASIS (AUCKLAND, N.Z.) 2021; 11:151-168. [PMID: 34909410 PMCID: PMC8665778 DOI: 10.2147/ptt.s342911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
There is increasing interest in the association between psoriasis and non-alcoholic fatty liver disease (NAFLD), which is a prevalent liver disease characterized by excessive fat storage and inflammation that can progress to fibrosis and cancer. Patients with psoriasis have a two-fold higher risk to develop NAFLD and a higher risk to progress to more severe liver disease. Psoriasis and NAFLD share common risk factors such as smoking, alcohol consumption, and the presence of metabolic syndrome and its component disorders. In addition, both psoriasis and NAFLD hinge upon a systemic low-grade inflammation that can lead to a vicious cycle of progressive liver damage in NAFLD as well as worsening of the underlying psoriasis. Other important shared pathophysiological pathways include peripheral insulin resistance and oxidative stress. NAFLD should receive clinical awareness as important comorbidity in psoriasis. In this review, we assess the recent literature on the epidemiological and pathophysiological relationship of psoriasis and NAFLD, discuss the clinical implications of NAFLD in psoriasis patients, and summarize the hepatotoxic and hepatoprotective potential of systemic psoriasis therapies.
Collapse
Affiliation(s)
- Deepak M W Balak
- Department of Dermatology, LangeLand Ziekenhuis, Zoetermeer, the Netherlands.,Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Stefano Piaserico
- Dermatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
17
|
Naguib M, Abou Elfotouh M, Wifi MN. Elevated Serum Cyclophilin D Level is Associated with Nonalcoholic Fatty Liver Disease and Higher Fibrosis Scores in Patients with Diabetes Mellitus. Int J Gen Med 2021; 14:4665-4675. [PMID: 34434058 PMCID: PMC8380628 DOI: 10.2147/ijgm.s322986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cyclophilin D (CypD) is a mitochondrial matrix protein involved in liver steatosis and fibrosis in vitro. However, the role of CypD in the development of fatty liver and liver fibrosis in humans has not been determined. Purpose To measure the serum level of CypD in patients with type 2 diabetes (T2DM) and nonalcoholic fatty liver disease (NAFLD) and to assess its relation to the presence of hepatic steatosis and fibrosis in this group of patients. Patients and Methods In this cross-sectional study, 30 patients with diabetes and NAFLD were compared to 30 patients with diabetes without NAFLD and 30 age- and sex-matched healthy subjects. Abdominal ultrasound was used to diagnose NAFLD. Serum CypD was measured using ELISA. Fibrosis-4 (FIB-4) index, AST to platelet ratio index (APRI), and NAFLD fibrosis score (NFS) were used as markers of liver fibrosis in patients with NAFLD. Patients with NAFLD were divided into two subgroups based on FIB-4 index: patients with liver fibrosis (FIB-4 >1.45) and patients without liver fibrosis (FIB-4 <1.45). CypD and other clinical and biochemical parameters were validated as predictors of NAFLD and liver fibrosis in diabetic patients in multivariate logistic regression analysis. Results Diabetic patients with NAFLD had higher serum CypD levels than those without NAFLD (11.65±2.96 vs 6.58±1.90 ng/mL, respectively, P <0.001). Correlation analysis revealed a significant positive correlation between CypD and FIB-4 index (P=0.001), APRI (P=0.013) and NFS (P<0.001). GGT and CypD were the only predictors of NAFLD. For the prediction of significant fibrosis, AUROC of CypD was 0.835 with a cutoff >14.05 ng/mL provides specificity of 81.8% and sensitivity of 75%. Conclusion Serum CypD is related to hepatic steatosis and fibrosis in diabetic patients. Serum CypD may thus provide a novel marker and therapeutic target of NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Mervat Naguib
- Diabetes and Endocrinology Unite, Internal Medicine Department, Faculty of Medicine, Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Mahmoud Abou Elfotouh
- Hepatology Unite, Internal Medicine Department, Faculty of Medicine, Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Mohamed-Naguib Wifi
- Hepatology Unite, Internal Medicine Department, Faculty of Medicine, Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Abstract
The non-immune-suppressive cyclophilin inhibitor CRV431 is a clinical candidate to cure nonalcoholic steatohepatitis (NASH) and has the potential to treat liver fibrosis and cancer incidence. Herein we report a concise chemical semisynthesis of CRV431 in four steps from the commercially available cyclosporine, featuring in this the flow-chemistry-based methylenation an intermolecular ring-closing metathesis and a Rh-catalyzed diastereoselective hydrogenation.
Collapse
Affiliation(s)
- Feng-Xia Li
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qing-Zhou Zhang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Guang Lin
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiang-Yu Huo
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
19
|
Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021; 167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.
Collapse
|