1
|
Niebel D, Fröhlich A, Zarbl R, Fietz S, de Vos L, Vogt TJ, Dietrich J, Sirokay J, Kuster P, Saavedra G, Ramírez Valladolid S, Hoffmann F, Strieth S, Landsberg J, Dietrich D. DNA methylation regulates TIGIT expression within the melanoma microenvironment, is prognostic for overall survival, and predicts progression-free survival in patients treated with anti-PD-1 immunotherapy. Clin Epigenetics 2022; 14:50. [PMID: 35410311 PMCID: PMC9004005 DOI: 10.1186/s13148-022-01270-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TIGIT is an immune checkpoint under investigation as therapeutic target. Understanding the regulation of TIGIT on an epigenetic level might support the development of companion biomarkers. METHODS We correlated TIGIT DNA methylation of single CpG sites with gene expression, signatures of immune infiltrates and interferon-γ, and survival in melanoma. We further analyzed methylation levels in immune cell subsets, melanocyte and melanoma cell lines. TIGIT expression patterns within components of the melanoma microenvironment were analyzed by single cell sequencing. We used quantitative methylation-specific PCR, flow cytometry, and immunohistochemistry for correlations between expression and methylation and to assess the effect of pharmacological demethylation of melanoma cells treated with 5-aza-2-deoxycytidine (decitabine). Finally, we investigated the association of patients' survival with TIGIT mRNA and methylation. RESULTS Depending on the sequence context of the analyzed CpG site, we found a cell type-specific TIGIT gene locus methylation pattern and significant correlations of TIGIT methylation with mRNA expression, an interferon γ signature, and distinct immune cell infiltrates, including TIGIT+ lymphocytes. We detected a melanoma cell-intrinsic TIGIT protein expression. Pharmacological demethylation of the A375 melanoma cell line led to a constitutive TIGIT expression. Low promoter flank methylation and high mRNA expression was associated with patients' prognosis and predicted progression-free survival in patients treated with anti-PD-1 immunotherapy. A high TIGIT+ lymphocyte score was associated with better progression-free survival under anti-PD-1 immunotherapy. CONCLUSIONS Our data demonstrate an epigenetic regulation of TIGIT expression via DNA methylation within the melanoma microenvironment. TIGIT DNA methylation and expression may serve as predictive biomarkers in the context of immunotherapies in melanoma.
Collapse
Affiliation(s)
- Dennis Niebel
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anne Fröhlich
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Simon Fietz
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Luka de Vos
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Timo J Vogt
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gonzalo Saavedra
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susana Ramírez Valladolid
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Friederike Hoffmann
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Vukadin S, Khaznadar F, Kizivat T, Vcev A, Smolic M. Molecular Mechanisms of Resistance to Immune Checkpoint Inhibitors in Melanoma Treatment: An Update. Biomedicines 2021; 9:835. [PMID: 34356899 PMCID: PMC8301472 DOI: 10.3390/biomedicines9070835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have revolutionized the treatment of advanced melanoma and ensured significant improvement in overall survival versus chemotherapy. ICI or targeted therapy are now the first line treatment in advanced melanoma, depending on the tumor v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutational status. While these new approaches have changed the outcomes for many patients, a significant proportion of them still experience lack of response, known as primary resistance. Mechanisms of primary drug resistance are not fully elucidated. However, many alterations have been found in ICI-resistant melanomas and possibly contribute to that outcome. Furthermore, some tumors which initially responded to ICI treatment ultimately developed mechanisms of acquired resistance and subsequent tumor progression. In this review, we give an overview of tumor primary and acquired resistance mechanisms to ICI and discuss future perspectives with regards to new molecular targets and combinatorial therapies.
Collapse
Affiliation(s)
- Sonja Vukadin
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Farah Khaznadar
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandar Vcev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Pathophysiology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|