1
|
Vogel T, Kohlmann S, Abboud Z, Thusek S, Fella F, Teßmar J, Sekimizu K, Miyashita A, Beilhack A, Groll J, Yu Y, Albrecht K. Beyond the Charge: Interplay of Nanogels' Functional Group and Zeta-Potential for Antifungal Drug Delivery to Human Pathogenic Fungus Aspergillus Fumigatus. Macromol Biosci 2024; 24:e2400082. [PMID: 38850104 DOI: 10.1002/mabi.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The ubiquitous mold Aspergillus fumigatus (A. fumigatus) is one of the main fungal pathogens causing invasive infections in immunocompromised humans. Conventional antifungal agents exhibit limited efficacy and often cause severe side effects. Nanoparticle-based antifungal delivery provides a promising alternative, which can increase local drug concentration; while, mitigating toxicity, thereby enhancing treatment efficacy. Previous research underscores the potential of poly(glycidol)-based nanogels (NG) with negative surface charge as carriers for delivering antifungals to A. fumigatus hyphae. In this study, NG is tailored with 2-carboxyethyl acrylate (CEA) or with phosphoric acid 2-hydroxyethyl acrylate (PHA). It is discovered that quenching with PHA clearly improves the adhesion of NG to hyphal surface and the internalization of NG into the hyphae under protein-rich conditions, surpassing the outcomes of non-quenched and CEA-quenched NG. This enhancement cannot be solely attributed to an increase in negative surface charge but appears to be contingent on the functional group of the quencher. Further, it is demonstrated that itraconazole-loaded, PHA-functionalized nanogels (NGxPHA-ITZ) show lower MIC in vitro and superior therapeutic effect in vivo against A. fumigatus compared to pure itraconazole. This confirms NGxPHA as a promising antifungal delivery system.
Collapse
Affiliation(s)
- Theresa Vogel
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Simon Kohlmann
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Zahraa Abboud
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Sina Thusek
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Franziska Fella
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Joerg Teßmar
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Kazuhisa Sekimizu
- Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Atsushi Miyashita
- Institute of Medical Mycology, Teikyo University, Tokyo, 192-0395, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Yidong Yu
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
- JSPS International Research Fellow Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
2
|
Castellanos Reynosa ME, Caal ME, Mercado D, Medina N, Pérez JC, Emeto TI, Arathoon E. Clinical characteristics, diagnosis, treatment and outcomes of patients living with HIV and co-infected with tuberculosis and histoplasmosis: a 5-y retrospective case series. Trans R Soc Trop Med Hyg 2024; 118:391-398. [PMID: 38279781 PMCID: PMC11149374 DOI: 10.1093/trstmh/trad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND In Latin America, tuberculosis (TB) and histoplasmosis are two of the most frequent opportunistic infections affecting people living with human immunodeficiency virus (HIV). However, there are limited data on the clinical characteristics and outcomes of patients with concurrent TB and histoplasmosis infections. METHODS This was a retrospective observational study to describe the clinical, epidemiological and laboratory characteristics and outcomes of 21 patients living with HIV (PLHIV) who were diagnosed with concurrent histoplasmosis and TB between 2017 and 2021 in Guatemala City, Guatemala. RESULTS Most patients were male and were newly diagnosed with HIV. All patients had advanced HIV disease (AHD). They presented with a median CD4 count of 20 cells/µl. The most common symptoms reported by the patients were fever, weight loss, cough and diarrhoea. Twelve patients died within 6 months of baseline evaluation, for a mortality rate of 57.1%. CONCLUSIONS PLHIV with concurrent TB and histoplasmosis infections are characterised by AHD, predominantly presenting with disseminated forms of these infections and with unspecific symptoms and signs. This evidence calls for early HIV and opportunistic infection screening and insights into the challenges and opportunities for the efficient diagnostic and therapeutic management of patients with AHD with concurrent histoplasmosis and TB infections.
Collapse
Affiliation(s)
- María Eugenia Castellanos Reynosa
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Danicela Mercado
- Clínica Familiar Luis Ángel García, Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Narda Medina
- Asociación de Salud Integral, Guatemala City, Guatemala
| | | | - Theophilus I Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Eduardo Arathoon
- Asociación de Salud Integral, Guatemala City, Guatemala
- Clínica Familiar Luis Ángel García, Hospital General San Juan de Dios, Guatemala City, Guatemala
| |
Collapse
|
3
|
Wang S, Pan J, Gu L, Wang W, Wei B, Zhang H, Chen J, Wang H. Review of treatment options for a multidrug-resistant fungus: Candida auris. Med Mycol 2024; 62:myad127. [PMID: 38066698 DOI: 10.1093/mmy/myad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Candida auris is a widely distributed, highly lethal, multidrug-resistant fungal pathogen. It was first identified in 2009 when it was isolated from fluid drained from the external ear canal of a patient in Japan. Since then, it has caused infectious outbreaks in over 45 countries, with mortality rates approaching 60%. Drug resistance is common in this species, with a large proportion of isolates displaying fluconazole resistance and nearly half are resistant to two or more antifungal drugs. In this review, we describe the drug resistance mechanism of C. auris and potential small-molecule drugs for treating C. auris infection. Among these antifungal agents, rezafungin was approved by the US Food and Drug Administration (FDA) for the treatment of candidemia and invasive candidiasis on March 22, 2023. Ibrexafungerp and fosmanogepix have entered phase III clinical trials.
Collapse
Affiliation(s)
- Siqi Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Jiangwei Pan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Liting Gu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Wei Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Jianwei Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
5
|
In vivo efficacy of olorofim against systemic scedosporiosis and lomentosporiosis. Antimicrob Agents Chemother 2021; 65:e0043421. [PMID: 34252298 DOI: 10.1128/aac.00434-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically relevant members of the Scedosporium/Pseudallescheria species complex and Lomentospora prolificans are generally resistant against currently available systemic antifungal agents in vitro and the infection due to these species is difficult to treat. We studied the in vivo efficacy of a new fungicidal agent olorofim (formerly F901318) against scedosporiosis and lomentosporiosis in neutropenic animals. Cyclophosphamide immunosuppressed CD-1 mice infected by Scedosporium apiospermum, Pseudallescheria boydii (Scedosporium boydii) and Lomentospora prolificans were treated by intraperitoneal administration of olorofim (15 mg/kg every 8 h for 9 days). The efficacy of olorofim treatment was assessed by the survival rate at 10 days post infection, levels of serum (1-3)-β-d-glucan (BG), histopathology, and fungal burden of kidneys 3 days post infection. Olorofim therapy significantly improved survival compared to the untreated controls; 80%, 100% and 100% of treated mice survived infection by Scedosporium apiospermum, Pseudallescheria boydii, and Lomentospora prolificans, respectively while less than 20% of the control mice (PBS-treated) survived at 10 days post infection. In the olorofim-treated neutropenic CD-1 mice infected with all three species, serum BG levels were significantly suppressed and fungal DNA detected in the target organs was significantly lower than controls. Furthermore, histopathology of kidneys revealed no or only few lesions with hyphal elements in the olorofim-treated mice, while numerous fungal hyphae were present in control mice. These results indicate olorofim to be a promising therapeutic agent for systemic scedosporiosis/lomentosporiosis, a devastating emerging fungal infection difficult to treat with currently available antifungals.
Collapse
|
6
|
Zhang J, Liu H, Xi L, Chang YC, Kwon-Chung KJ, Seyedmousavi S. Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of Talaromyces marneffei. Antimicrob Agents Chemother 2021; 65:e00256-21. [PMID: 33753341 PMCID: PMC8316025 DOI: 10.1128/aac.00256-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro antifungal susceptibility profiling of 32 clinical and environmental Talaromyces marneffei isolates recovered from southern China was performed against olorofim and 7 other systemic antifungals, including amphotericin B, 5-flucytosine, posaconazole, voriconazole, caspofungin, and terbinafine, using CLSI methodology. In comparison, olorofim was the most active antifungal agent against both mold and yeast phases of all tested Talaromyces marneffei isolates, exhibiting an MIC range, MIC50, and MIC90 of 0.0005 to 0.002 μg/ml, 0.0005 μg/ml, and 0.0005 μg/ml, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongfang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Liyan Xi
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|