1
|
Bolat M, Tekin S, Bolat İ, Atasever A, Çinar B, Dağ Y, Şengül E, Yildirim S, Warda M, Çelebi F. Gallic acid's protective mechanisms against acrylamide-induced pulmonary injury: in vivo and in silico insights into the Nrf-2/HO-1/NFκB pathway modulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03996-1. [PMID: 40072556 DOI: 10.1007/s00210-025-03996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Acrylamide (ACR) is a toxic compound formed during the heating of tobacco and starchy foods, contributing to increased reactive oxygen species (ROS) levels and significant health risks. This study evaluates the protective effects of gallic acid (GA), a natural polyphenol with potent antioxidant and anti-inflammatory properties, against ACR-induced lung injury. Fifty male rats were divided into five groups: Control, ACR, GA50 + ACR, GA100 + ACR, and GA100. Lung tissues were analyzed biochemically, histopathologically, immunohistochemically, and via immunofluorescence. GA exhibited dose-dependent protective effects by enhancing antioxidant defenses through Nrf-2 (43% increase) and HO-1 activation and reducing lipid peroxidation markers (MDA decreased by 38%). GA also suppressed pro-inflammatory mediators (TNF-α reduced by 35%) and restored anti-inflammatory levels by modulating the NF-κB pathway. Furthermore, GA reduced apoptosis (Caspase-3 activity decreased by 30%) and preserved lung tissue integrity by mitigating oxidative DNA damage (8-OHdG levels reduced by 29%) and pro-apoptotic signaling (Bax levels reduced by 34%). Computational analyses demonstrated GA's interaction with the KEAP1 protein, supporting its role in activating the KEAP1-Nrf2 pathway. These findings highlight GA's antioxidant, anti-inflammatory, and anti-apoptotic properties, suggesting its therapeutic potential for protecting against ACR-induced lung injury and paving the way for future research in lung health and toxicology.
Collapse
Affiliation(s)
- Merve Bolat
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey.
| | - Samet Tekin
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey.
| | - Aslıhan Atasever
- Veterinary Medicine, Çayırlı Vocational High School, Erzincan University, Erzincan, Turkey.
| | - Burak Çinar
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fikret Çelebi
- Department of Physiology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| |
Collapse
|
2
|
Amssayef A, Elbouny H, Soulaimani B, Abdessadak O, Chihab H, El Hilaly J, Eddouks M. The protective effect of Argan oil and its main constituents against xenobiotics-induced toxicities. Fitoterapia 2025; 180:106325. [PMID: 39645052 DOI: 10.1016/j.fitote.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Argan oil (AO) is a vegetable oil extracted from the fruits of Argania spinosa L. tree, belonging to the Sapotaceae family, primarily found in Morocco. Research studies have demonstrated that AO exhibits diverse pharmacological properties, including antioxidant, antimicrobial, anticancer, antiinflammatory, antidiabetic, antihypercholesterolemic, antiatherogenic, and immunomodulatory effects. These effects are attributed to its main constituents, including oleic acid, linoleic acid, γ-tocopherol, α-tocopherol, and ferulic acid. OBJECTIVE This review aimed to present the protective role of AO and its main constituents against xenobiotics-induced toxicities. MATERIAL AND METHODS Based on results from various in vitro and in vivo investigations published in the main scientific databases, the beneficial action of AO against xenobiotics-induced toxicities was analyzed. RESULTS AO and its main constituents have reduced neurotoxicity, hepatotoxicity, nephrotoxicity, pneumotoxicity, thyroid toxicity, hematotoxicity, immunotoxicity, genotoxicity, and colon toxicity induced by different natural and chemical xenobiotics. Different mechanisms of action are involved in these effects, including enhancement of antioxidant defense, reduction of oxidative stress, modulation of inflammation, stimulation of fatty acid oxidation, suppression of apoptosis, regulation of miRNAs expression, elevation of acetylcholinesterase activity, activation of Krebs cycle enzymes, and restoration of mitochondrial function. CONCLUSION The study shows clearly the beneficial effect of Argan oil against xenobiotics-induced toxicities was analyzed. However, clinical trials are necessary to verify the protective effects of this oil in human intoxications caused by both natural and chemical xenobiotics.
Collapse
Affiliation(s)
- Ayoub Amssayef
- Department of Biology, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30003, Morocco
| | - Hamza Elbouny
- Biochemistry of Natural Ressources eam, Faculty of Sciences and Techniques, Errachiia, Universty Moulay Ismail, Meknes, Morocco
| | - Bouchra Soulaimani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research unit-cNrst N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Oumayma Abdessadak
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | | | - Jaouad El Hilaly
- Laboratory of Pedagogical and Didactic Engineering of Sciences and Mathematics, Regional Center of Education and Training (CRMEF) of Fez, Rue Koweit, P.B 49 Agdal, 30050 Fes, Morocco; R.N.E Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, P. B 1223, Route Oujda, 35000 Fez, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco.
| |
Collapse
|
3
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
4
|
Demir M, Altinoz E, Cetinavci D, Elbe H, Bicer Y. The effects of pinealectomy and melatonin treatment in acrylamide-induced nephrotoxicity in rats: Antioxidant and anti-inflammatory mechanisms. Physiol Behav 2024; 275:114450. [PMID: 38145817 DOI: 10.1016/j.physbeh.2023.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Acrylamide (AA) is toxic and forms in food that undergoes high-temperature processing. This study aimed to investigate the effects of AA-induced toxicity on renal tissue in pinealectomized rats and the possible protective effect of exogenous Melatonin (ML) administration. MATERIALS AND METHODS Sixty rats were randomized into 6 groups (n = 10): Sham, Sham+AA, Sham+AA+ML, PX, PX+AA, and PX+AA+ML. Sham and pinealectomized rats received AA (25 mg/kg/day orally) and ML (0.5 ml volume at 10 mg/kg/day, intraperitoneal) for 21 days. RESULTS The results showed that malondialdehyde (MDA), total oxidant status (TOS), oxidative stress index (OSI), tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) levels of the kidney and urea and creatinine levels of serum in the PX (pinealectomy)+AA group were more increased than in the Sham+AA group. In addition, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant status (TAS) levels decreased more in the PX+AA group than in the Sham+AA group. Also, we observed more histopathologic damage in the PX+AA group. On the other hand, up-regulation of kidney tissue antioxidants, down-regulation of tissue oxidants, and improvement in kidney function were achieved with ML treatment. Also, histopathological findings such as inflammatory cell infiltration, shrinkage of glomeruli, and dilatation of tubules caused by AA toxicity improved with ML treatment. CONCLUSION ML supplementation exhibited adequate nephroprotective effects against the nephrotoxicity of AA on pinealectomized rat kidney tissue function by balancing the oxidant/antioxidant status and suppressing the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Histology Embryology, Karabuk University, Karabuk, Turkey
| | | | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Histology Embryology, Karabuk University, Karabuk, Turkey
| |
Collapse
|
5
|
Li L, Wang Z, Li Y, Ma F, Wang X, Yan H, Li W, Pang Y, Yuan Y. Allicin Alleviates Mitochondrial Dysfunction in Acrylamide-Induced Rat Kidney Involving the Regulation of SIRT1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15785-15795. [PMID: 37830900 DOI: 10.1021/acs.jafc.3c04687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Acrylamide (AA), commonly formed in carbohydrate-rich thermally processed foods, exerts harmful effects on the kidney. Allicin, from crushed garlic cloves, exhibits strong biological activities. In the current study, the protection mechanisms of allicin against AA-caused nephrotoxicity were comprehensively examined using an in vivo rat model based on previous research that allicin plays a key role in improving renal function. The results showed that allicin attenuated histological changes of the kidney and ameliorated renal function. Damaged mitochondrial structures, upregulated voltage-dependent anion channel 1 expression, and decreased membrane potential and adenosine 5'-triphosphate levels were observed after AA treatment. Surprisingly, allicin notably reversed the adverse effects. Further, allicin effectively restored mitochondrial function via modulating mitochondrial biogenesis and dynamics, which might be associated with the upregulated expression of sirtuin 1 (SIRT1). Meanwhile, allicin dramatically activated the SIRT1 activity and subsequently inhibited p53 acetylation, prevented the translocation of cytochrome c to the cytoplasm, and reduced the caspase expression, thus further inhibiting mitochondrial apoptosis caused by AA. In summary, the relieving effect of allicin on AA-caused nephrotoxicity lies in its inhibition of mitochondrial dysfunction and mitochondrial apoptosis.
Collapse
Affiliation(s)
- Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yucai Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Fuying Ma
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xinwei Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Wenliang Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
6
|
Huang P, Wu JJ, Zhang JW, Hou YQ, Zhu P, Yin R, Yu RB, Zhang Y, Yue M, Hou W. Genetic variants of IFIH1 and DHX58 affect the chronicity of hepatitis C in the Chinese Han population. PeerJ 2023; 11:e14740. [PMID: 36743960 PMCID: PMC9893905 DOI: 10.7717/peerj.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Hepatitis C remains a major public health problem in the world. The host immune system plays a key role in viral clearance. This study aimed to investigate the connection between retinoic acid-inducible gene I-like (RIG-I-like) receptor gene polymorphism and hepatitis C chronicity in the Chinese Han population. The current study genotyped three SNPs (IFIH1 rs10930046 and DHX58 rs2074158, rs2074160) to assess their association with the chronicity of hepatitis C virus (HCV) infection among 1,590 participants (590 spontaneous HCV clearance cases and 1,000 persistent infection patients). Our research shows that DHX58 rs2074158-G allele (dominant model: adjusted OR = 1.53, 95% CI [1.20-1.95], P = 0.001; additive model: adjusted OR = 1.50, 95% CI [1.27-1.78], P < 0.001) and IFIH1 rs10930046-C allele (additive model: adjusted OR = 1.26, 95% CI [1.07-1.49], P = 0.005) were associated with chronic hepatitis C (CHC). And the risk of CHC increased in people carrying more unfavorable genotypes (rs2074158-AG/GG or rs10930046-CC), with the chronic rates for genotypes number from zero to two in 60.69%, 57.33%, and 85.93%, respectively (adjusted OR = 3.64, 95% CI [2.18-6.08]; P < 0.001). Genetic polymorphism of IFIH1 and DHX58 may be related to CHC in the Chinese Han population. Furthermore, the risk of CHC increases as the number of unfavorable genotypes carried by the HCV-infected person increases. IFIH1 rs10930046, DHX58 rs2074158, age, ALT, and AST levels were all independent predictors of CHC.
Collapse
Affiliation(s)
- Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Jing Wu
- The Department of Environmental Health, Yangzhou Center for Disease Control and Prevention, Yang-zhou, China
| | - Jin-Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yu-Qing Hou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Zhu
- Department of Medical Affairs, Jiangsu Provincial People’s Hospital, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong-Bin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Hou
- The State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|
8
|
Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein. Arh Hig Rada Toksikol 2022; 73:200-206. [PMID: 36226819 PMCID: PMC9837534 DOI: 10.2478/aiht-2022-73-3640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Acrolein (AC) is one of the most toxic environmental pollutants, often associated with incomplete combustion of petrol, wood, and plastic, oil frying, and tobacco smoking, that causes oxidative damage to DNA and mitochondria. Considering that little is known about the protective effects of whey protein (WP) against AC-induced liver toxicity, the aim of our study was to learn more about them in respect to liver mitochondrial oxidative stress, respiratory enzymes, Krebs cycle enzymes, and adenosine triphosphate (ATP). To do that, we treated Sprague Dawley rats with daily doses of AC alone (5 mg/kg bw in 0.9 % NaCl solution), WP alone (200 mg/kg bw, in 0.9 % NaCl solution), or their combination by oral gavage for six days a week over 30 days. As expected, the AC group showed a drop in glutathione levels and antioxidant, transport chain, and tricarboxylic acid cycle enzyme activities and a significant rise in mitochondrial lipid peroxidation and protein carbonyl levels. Co-treatment with WP mitigated oxidative stress and improved enzyme activities. Judging by the measured parameters, WP reduced AC toxicity by improving bioenergetic mechanisms and eliminating oxidative stress.
Collapse
|
9
|
Protective Effect of Lycium ruthenicum Polyphenols on Oxidative Stress against Acrylamide Induced Liver Injury in Rats. Molecules 2022; 27:molecules27134100. [PMID: 35807346 PMCID: PMC9267984 DOI: 10.3390/molecules27134100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR) is formed during tobacco and carbohydrate-rich food heating and is widely applied in many industries, with a range of toxic effects. The antioxidant properties of Lycium ruthenicum polyphenols (LRP) have been established before. This study aimed to research the protective effect of LRP against ACR-induced liver injury in SD rats. Rats were divided into six groups: Control, ACR (40 mg/kg/day, i.g.), LRP (50, 100, and 200 mg/kg/day, i.g.) plus ACR, and LRP groups. After 19 days, we evaluated oxidative status and mitochondrial functions in the rat’s liver. The results showed that glutathione (GSH) and superoxide dismutase (SOD) levels increased after LRP pretreatment. In contrast, each intervention group reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels compared to the ACR group. Meanwhile, alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver mitochondrial ATPase activity, mRNA expression of mitochondrial complex I, III, and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream proteins were all increased. This study suggested that LRP could reduce ACR-induced liver injury through potent antioxidant activity. LRP is recommended as oxidative stress reliever against hepatotoxicity.
Collapse
|
10
|
The perchloroethylene‐induced toxicity in dry cleaning workers lymphocytes through induction of oxidative stress. J Biochem Mol Toxicol 2022; 36:e23000. [DOI: 10.1002/jbt.23000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
|
11
|
Zhang Y, He P, Wang G, Liang M, Xie D, Nie J, Liu C, Song Y, Liu L, Wang B, Li J, Zhang Y, Wang X, Huo Y, Hou FF, Xu X, Qin X. Interaction of Serum Alkaline Phosphatase and Folic Acid Treatment on Chronic Kidney Disease Progression in Treated Hypertensive Adults. Front Pharmacol 2022; 12:753803. [PMID: 35095485 PMCID: PMC8793861 DOI: 10.3389/fphar.2021.753803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
The relation of alkaline phosphatase (ALP) with chronic kidney disease (CKD) is still uncertain. We aimed to examine the prospective association between serum ALP and CKD progression, and the modifying effect of serum ALP on folic acid in preventing CKD progression in treated hypertensive patients. This is a post-hoc analysis of 12,734 hypertensive adults with relevant measurements and without liver disease at baseline from the renal sub-study of the China Stroke Primary Prevention Trial, where participants were randomly assigned to daily treatments of 10 mg enalapril and 0.8 mg folic acid, or 10 mg enalapril alone. The primary outcome was CKD progression, defined as a decrease in estimated glomerular filtration rate (eGFR) of ≥30% and to a level of <60 ml/min/1.73 m2 if baseline eGFR was ≥60 ml/min/1.73 m2; or a decrease in eGFR of ≥50% if baseline eGFR was <60 ml/min/1.73 m2; or end-stage renal disease. Over a median of 4.4 years, in the enalapril only group, participants with baseline serum ALP≥110IU/L (quartile 4) had a significantly higher risk of CKD progression (3.4% vs 2.3%; adjusted OR,1.61; 95%CI:1.11, 2.32), compared with those with ALP<110IU/L. For those with enalapril and folic acid treatment, compared with the enalapril only treatment, the risk of CKD progression was reduced from 3.4 to 2.1% (adjusted OR, 0.53; 95%CI:0.34, 0.83) among participants with baseline ALP≥110IU/L, whereas there was no significant effect among those with ALP<110IU/L. In hypertensive patients, higher serum ALP was associated with increased risk of CKD progression, and this risk was reduced by 47% with folic acid treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Panpan He
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Guobao Wang
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Min Liang
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Di Xie
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Chengzhang Liu
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- State Key Laboratory of Organ Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
13
|
Salimi A, Hashemidanesh N, Seydi E, Baghal E, Khodaparast F, Ghobadi H. Restoration and stabilization of acrylamide-induced DNA, mitochondrial damages and oxidative stress by chrysin in human lymphocyte. Expert Opin Drug Metab Toxicol 2021; 17:857-865. [PMID: 34102941 DOI: 10.1080/17425255.2021.1940951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Acrylamide (AA) is a water-soluble toxic chemical that is considered one of the most important food contaminants. Furthermore, AA is considered a major public health risk. METHODS This study was designed to evaluate the effects of AA on cytotoxicity, oxidative damage and genotoxicity in human lymphocytes and also to evaluate the protective effects of the chrysin (CH). Lymphocytes after isolation from the blood were treated with AA (50 µM), AA (50 µM) plus CH (10, 25, 50 µM) and CH (50 µM), and parameters such as cell viability, mitochondrial and lysosomal damage, as well as oxidative damage to DNA were examined. RESULTS The results showed that CH was able to reduce cytotoxicity, reactive oxygen species (ROS) levels, lipid peroxidation (LPO) level, collapse in mitochondrial membrane potential (MMP) and oxidative damage of DNA caused by AA in human lymphocytes. Also, co-treatment of the AA-exposed human lymphocytes with CH increases the glutathione (GSH) levels. CONCLUSION Results suggest that CH (10, 25, 50 µM) shows a protective role in AA-induced cytotoxicity, oxidative stress, mitochondrial damage and DNA oxidative damage.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Niloufar Hashemidanesh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Elahe Baghal
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Internal Medicine Department (Pulmonary Division), Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
14
|
Bouchab H, Ishaq A, El Kebbaj R, Nasser B, Saretzki G. Protective effect of argan oil on DNA damage in vivo and in vitro. Biomarkers 2021; 26:425-433. [PMID: 33843382 DOI: 10.1080/1354750x.2021.1905068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Iron-overload is a well-known cause for the development of chronic liver diseases and known to induce DNA damage.Material and methods: The protective effect of argan oil (AO) from the Argania spinosa fruit and olive oil (OO) (6% AO or OO for 28 days) was evaluated on a mouse model of iron overload (3.5mg Fe2+/liter) and in human fibroblasts where DNA damage was induced via culture under hyperoxia (40% oxygen).Results: Iron treatment induced DNA damage in liver tissue while both oils were able to decrease it. We confirmed this effect in vitro in MRC-5 fibroblasts under hyperoxia. A cell-free ABTS assay suggested that improvement of liver toxicity by both oils might depend on a high content in tocopherol, phytosterol and polyphenol compounds known for their antioxidant potential. The antioxidant effect of AO was confirmed in fibroblasts by reduced intracellular peroxide levels after hyperoxia. However, we could not find a significant decrease of genes encoding pro-inflammatory cytokines (TNFα, IL-6, IL-1β, COX-2) or senescence markers (p16 and p21) for the oils in mouse liver.Conclusion: We found a striking effect of AO by ameliorating DNA damage after iron overload in a mouse liver model and in human fibroblasts by hyperoxia adding compelling evidence to the protective mechanisms of AO and OO.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco.,Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abbas Ishaq
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Riad El Kebbaj
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco.,Laboratory of Health Sciences and Technologies, Hassan First University of Settat, Higher Institute of Health Sciences, Settat, Morocco
| | - Boubker Nasser
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco
| | - Gabriele Saretzki
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|