1
|
Maruyama Y, Harano K, Kanai H, Ishida Y, Tanaka H, Sugiura S, Maeda H. Ion-Pairing Chromonic Liquid Crystals via Alternately Stacked Assembly of Amphiphilic Charged π-Electronic Systems. Angew Chem Int Ed Engl 2025; 64:e202415135. [PMID: 39313476 DOI: 10.1002/anie.202415135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
In this study, a new assembly strategy for lyotropic chromonic liquid crystals (LCLCs) is proposed using iπ-iπ interactions, mainly comprising electrostatic and dispersion forces, between charged π-electronic systems to form stacking structures supported by the hydration of triethylene glycol (TEG) units. The meso-TEG-aryl-substituted porphyrin AuIII complex, an amphiphilic π-electronic cation, showed diverse states and assembly modes in ion pairs depending on the coexisting counteranions. The PCCp- ion pair formed a hexagonal columnar (Colh) LC phase based on a charge-by-charge assembly, suggesting the formation of an ordered arrangement of charged π-electronic systems through iπ-iπ interactions, with reduced interactions between the TEG chains. Furthermore, in the presence of water, LCLC behavior in the Colh and nematic columnar phases according to the amount of water were observed for the PCCp- ion pair as a result of iπ-iπ interactions. Magnetic-field-induced orientation of the charge-by-charge columnar structures upon dehydration was observed. Furthermore, single-stranded charge-by-charge columnar structures, as components of the LCLCs, were observed using transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Yuto Maruyama
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan
| | - Hayato Kanai
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Yasuhiro Ishida
- Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinya Sugiura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
2
|
Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals. Proc Natl Acad Sci U S A 2021; 118:2108361118. [PMID: 34446562 DOI: 10.1073/pnas.2108361118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lyotropic chromonic liquid crystals are water-based materials composed of self-assembled cylindrical aggregates. Their behavior under flow is poorly understood, and quantitatively resolving the optical retardance of the flowing liquid crystal has so far been limited by the imaging speed of current polarization-resolved imaging techniques. Here, we employ a single-shot quantitative polarization imaging method, termed polarized shearing interference microscopy, to quantify the spatial distribution and the dynamics of the structures emerging in nematic disodium cromoglycate solutions in a microfluidic channel. We show that pure-twist disclination loops nucleate in the bulk flow over a range of shear rates. These loops are elongated in the flow direction and exhibit a constant aspect ratio that is governed by the nonnegligible splay-bend anisotropy at the loop boundary. The size of the loops is set by the balance between nucleation forces and annihilation forces acting on the disclination. The fluctuations of the pure-twist disclination loops reflect the tumbling character of nematic disodium cromoglycate. Our study, including experiment, simulation, and scaling analysis, provides a comprehensive understanding of the structure and dynamics of pressure-driven lyotropic chromonic liquid crystals and might open new routes for using these materials to control assembly and flow of biological systems or particles in microfluidic devices.
Collapse
|
3
|
da Silva DGB, Hallwass F, Navarro-Vázquez A. Single experiment measurement of residual dipolar couplings in aqueous solution using a biphasic bisperylene imide chromonic liquid crystal. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:408-413. [PMID: 33295034 DOI: 10.1002/mrc.5120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The use of the biphasic isotropic/nematic region in a bisperylene imide-based lyotropic liquid crystal system allows the extraction of proton-carbon 1 DCH residual dipolar couplings in aqueous solution from a single F1-coupled HSQC experiment. The method was successfully applied to the RDC-based conformational analysis of sucrose.
Collapse
Affiliation(s)
- Danilo G B da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
PEGylated perylene bisimides: Chromonic building blocks for the aqueous synthesis of nanostructured silica materials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Potter TD, Walker M, Wilson MR. Self-assembly and mesophase formation in a non-ionic chromonic liquid crystal: insights from bottom-up and top-down coarse-grained simulation models. SOFT MATTER 2020; 16:9488-9498. [PMID: 32955531 DOI: 10.1039/d0sm01157f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New coarse-grained models are introduced for a non-ionic chromonic molecule, TP6EO2M, in aqueous solution. The multiscale coarse-graining (MS-CG) approach is used, in the form of hybrid force matching (HFM), to produce a bottom-up CG model that demonstrates self-assembly in water and the formation of a chromonic stack. However, the high strength of binding in stacks is found to limit the transferability of the HFM model at higher concentrations. The MARTINI 3 framework is also tested. Here, a top-down CG model is produced which shows self-assembly in solution in good agreement with atomistic studies and transfers well to higher concentrations, allowing the full phase diagram of TP6EO2M to be studied. At high concentration, both self-assembly of molecules into chromonic stacks and self-organisation of stacks into mesophases occurs, with the formation of nematic (N) and hexagonal (M) chromonic phases. This CG-framework is suggested as a suitable way of studying a range of chromonic-type drug and dye molecules that exhibit complex self-assembly and solubility behaviour in solution.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Martin Walker
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Eun J, Cheon J, Kim SJ, Shin TJ, Jeong J. Lyotropic Chromonic Liquid Crystals and Their Impurities Reveal the Importance of the Position of Functional Groups in Self-Assembly. J Phys Chem B 2020; 124:9246-9254. [PMID: 32960600 DOI: 10.1021/acs.jpcb.0c07163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the effect of purification and impurities on the self-assembly and phase behavior of lyotropic chromonic liquid crystals (LCLCs). LCLC molecules in water stack to form aggregates; then, the elongated nanoaggregates align to make liquid crystalline phases. Utilizing multiple experimental techniques, we unveil impurities in commercial Sunset Yellow FCF (SSY), a representative LCLC, and how the precipitation-based purification promotes the formation of the aggregates and mesophase. We further explore the roles of intrinsic impurities, i.e., byproducts of the SSY synthesis, whose molecular structures are almost identical to that of SSY but differ only in the number and position of sulfonate groups. Combining quantum chemical calculations of molecular structures and experimental investigation of aggregate structures and phase behavior, we propose that the impurities of the planar shapes behave as planar SSY, i.e., participating in aggregate formation, whereas the nonplanar one disrupts the nematic phase. These results highlight the critical roles of the impurities and deepen our understanding of self-assembled aggregates and their aligned mesophases.
Collapse
Affiliation(s)
- Jonghee Eun
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jiyong Cheon
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sung-Jo Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Shiraishi K, Takahashi S, Le KV, Naka Y, Sasaki T. Bulk Alignment of Chromonic Aggregates During Swelling of Hydrogels. Macromol Rapid Commun 2020; 41:e1900631. [DOI: 10.1002/marc.201900631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Koji Shiraishi
- Department of ChemistryFaculty of ScienceTokyo University of Science 1‐3 Kagurazaka Shinjuku‐ku Tokyo 162‐8601 Japan
| | - Sawako Takahashi
- Department of ChemistryFaculty of ScienceTokyo University of Science 1‐3 Kagurazaka Shinjuku‐ku Tokyo 162‐8601 Japan
| | - Khoa V. Le
- Department of ChemistryFaculty of ScienceTokyo University of Science 1‐3 Kagurazaka Shinjuku‐ku Tokyo 162‐8601 Japan
| | - Yumiko Naka
- Department of ChemistryFaculty of ScienceTokyo University of Science 1‐3 Kagurazaka Shinjuku‐ku Tokyo 162‐8601 Japan
| | - Takeo Sasaki
- Department of ChemistryFaculty of ScienceTokyo University of Science 1‐3 Kagurazaka Shinjuku‐ku Tokyo 162‐8601 Japan
| |
Collapse
|
8
|
Lee H, Sunkara V, Cho YK, Jeong J. Effects of poly(ethylene glycol) on the wetting behavior and director configuration of lyotropic chromonic liquid crystals confined in cylinders. SOFT MATTER 2019; 15:6127-6133. [PMID: 31290906 DOI: 10.1039/c9sm00927b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the effects of poly(ethylene glycol) (PEG) doping on nematic lyotropic chromonic liquid crystals (LCLCs) confined in a cylindrical cavity. First, PEG added to Sunset Yellow (SSY) renders confining glass surfaces nemato-phobic by adsorption. We also confirm that the grafting of PEG to bare glass surfaces changes them from nemato-philic to nemato-phobic. This change in the wetting behavior affects how nematic director configurations form and relax. Additionally, we observe that PEG-doped nematic SSY retains the double-twist director configuration as in the PEG-free case. However, the PEG-doped nematic SSY is accompanied by unprecedented domain-wall-like defects and heterogeneity in the director configuration. We propose multiple hypotheses on how PEG changes the director configuration, including the formation of meta-stable director configurations.
Collapse
Affiliation(s)
- Hyesong Lee
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea and Department of Biomedical Engineering, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. and Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Wang D, Feng L, Song B, Pei X, Cui Z, Xie D. Viscoelastic lyotropic liquid crystals formed in a bio-based trimeric surfactant system. SOFT MATTER 2019; 15:4208-4214. [PMID: 31073550 DOI: 10.1039/c8sm02594k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exploring the self-assembly of oligomeric surfactants is expected to bridge the gap between conventional and polymeric surfactants. Using the natural resource rosin as the starting material, a bio-based star-shaped trimeric quaternary ammonium surfactant (abbreviated tri-R-4-Phe) was synthesized. With three bulky dehydroabietic acid units in the hydrophobic group, tri-R-4-Phe has a molecular weight of 1684.9 and shows strong affinity towards both water and nonpolar organic compounds. In the presence of tri-R-4-Phe, C12EO3 was able to form lamellar lyotropic liquid crystals over a wide concentration range in water. The tri-R-4-Phe/C12EO3/water tertiary system was investigated by polarizing optical microscopy (POM), small angle X-ray scattering (SAXS) and rheological measurements. The investigated samples with different formulations all showed strong viscoelasticity, and the viscosity increased with the surfactant content. All samples showed interesting shear banding phenomena due to the shear induced mesoscale phase transition in tri-R-4-Phe/C12EO3/water systems. The present work reveals the unique behaviour of trimeric surfactant involved LLC systems and the result may be helpful in investigating delicate molecular self-assembly using natural resources.
Collapse
Affiliation(s)
- Danping Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Michael P. Allen
- Department of Physics, University of Warwick, Coventry, UK
- H. H. Wills Physics Laboratory, Royal Fort, Bristol, UK
| |
Collapse
|
11
|
Pedrini A, Piastra M, Virga EG. Non-monotonic, lily-like twist distribution in toroidal nematics. SOFT MATTER 2019; 15:633-641. [PMID: 30608499 DOI: 10.1039/c8sm02177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toroidal nematics are droplets of nematic liquid crystals in the form of a circular torus. When the nematic director is subject to planar degenerate boundary conditions, the bend-only director field with vector lines along the parallels of all nested torodial shells is an equilibrium solution for all values of the elastic constants. Local stability analyses have shown that an instability is expected to occur for sufficiently small values of the twist elastic constant. It is natural to wonder whether in this regime the global equilibrium would be characterized by a monotonic twist, or not. In the former case, the twist distribution over the torus' circular cross-section would be represented pictorially by a fennel-like surface emanating from the centre. We prove that instead the stable twist distribution is represented by a lily-like surface. Thus, generically the twist distribution is not monotonic and its maximum may fall well within the torus, far away from the boundary. To cope with the peculiar complexity of the elastic free-energy functional in the fully non-linear setting, we developed an ad hoc deep-learning optimization method, which here is also further validated and documented for it promises to be applicable to other similar problems, equally intractable analytically.
Collapse
Affiliation(s)
- Andrea Pedrini
- Dipartimento di Matematica, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| | - Marco Piastra
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| | - Epifanio G Virga
- Dipartimento di Matematica, Università di Pavia, via Ferrata 5, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Gao Q, Zou C, Lu W. Lyotropic Chromonic Mesophases Derived from Metal-Organic Complexes. Chem Asian J 2018; 13:3092-3105. [DOI: 10.1002/asia.201800737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry; South University of Science and Technology of China; Shenzhen Guangdong 518055 P. R. China
| | - Chao Zou
- Department of Chemistry; South University of Science and Technology of China; Shenzhen Guangdong 518055 P. R. China
| | - Wei Lu
- Department of Chemistry; South University of Science and Technology of China; Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
13
|
Shirai T, Shuai M, Nakamura K, Yamaguchi A, Naka Y, Sasaki T, Clark NA, Le KV. Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives. SOFT MATTER 2018; 14:1511-1516. [PMID: 29442119 DOI: 10.1039/c7sm02262j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 μm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.
Collapse
Affiliation(s)
- Tatsuya Shirai
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|