1
|
Yang K, Li Q, Liu H, Zeng Q, Cai D, Xu J, Zhou Y, Tsui PH, Zhou X. Suppressing HIFU interference in ultrasound images using 1D U-Net-based neural networks. Phys Med Biol 2024; 69:075006. [PMID: 38382109 DOI: 10.1088/1361-6560/ad2b95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective.One big challenge with high-intensity focused ultrasound (HIFU) is that the intense acoustic interference generated by HIFU irradiation overwhelms the B-mode monitoring images, compromising monitoring effectiveness. This study aims to overcome this problem using a one-dimensional (1D) deep convolutional neural network.Approach. U-Net-based networks have been proven to be effective in image reconstruction and denoising, and the two-dimensional (2D) U-Net has already been investigated for suppressing HIFU interference in ultrasound monitoring images. In this study, we propose that the one-dimensional (1D) convolution in U-Net-based networks is more suitable for removing HIFU artifacts and can better recover the contaminated B-mode images compared to 2D convolution.Ex vivoandinvivoHIFU experiments were performed on a clinically equivalent ultrasound-guided HIFU platform to collect image data, and the 1D convolution in U-Net, Attention U-Net, U-Net++, and FUS-Net was applied to verify our proposal.Main results.All 1D U-Net-based networks were more effective in suppressing HIFU interference than their 2D counterparts, with over 30% improvement in terms of structural similarity (SSIM) to the uncontaminated B-mode images. Additionally, 1D U-Nets trained usingex vivodatasets demonstrated better generalization performance ininvivoexperiments.Significance.These findings indicate that the utilization of 1D convolution in U-Net-based networks offers great potential in addressing the challenges of monitoring in ultrasound-guided HIFU systems.
Collapse
Affiliation(s)
- Kun Yang
- School of Microelectronics, Tianjin University, Tianjin, People's Republic of China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin, People's Republic of China
| | - Hengxin Liu
- School of Microelectronics, Tianjin University, Tianjin, People's Republic of China
| | - Qingxuan Zeng
- School of Microelectronics, Tianjin University, Tianjin, People's Republic of China
| | - Dejia Cai
- The State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, People's Republic of China
| | - Jiahong Xu
- The State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, People's Republic of China
| | - Yingying Zhou
- The State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, People's Republic of China
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Xiaowei Zhou
- The State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, People's Republic of China
| |
Collapse
|
2
|
Chen X, Rao W, Shi Y, Liu J. Minimally Invasive Injectable Thermochemical Ablation Therapy of Malignant Tumor via Alkali Metal Fluid. BIOMEDICAL MATERIALS & DEVICES 2023; 1:269-285. [DOI: 10.1007/s44174-022-00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2025]
|
3
|
Zhang X, Landgraf L, Bailis N, Unger M, Jochimsen TH, Melzer A. Image-Guided High-Intensity Focused Ultrasound, A Novel Application for Interventional Nuclear Medicine? J Nucl Med 2021; 62:1181-1188. [PMID: 34088775 PMCID: PMC8882895 DOI: 10.2967/jnumed.120.256230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Image-guided high-intensity focused ultrasound (HIFU) has been increasingly used in medicine over the past few decades, and several systems for such have become commercially available. HIFU has passed regulatory approval around the world for the ablation of various solid tumors, the treatment of neurologic diseases, and the palliative management of bone metastases. The mechanical and thermal effects of focused ultrasound provide a possibility for histotripsy, supportive radiation therapy, and targeted drug delivery. The integration of imaging modalities into HIFU systems allows for precise temperature monitoring and accurate treatment planning, increasing the safety and efficiency of treatment. Preclinical and clinical results have demonstrated the potential of image-guided HIFU to reduce adverse effects and increase the quality of life postoperatively. Interventional nuclear image-guided HIFU is an attractive noninvasive option for the future.
Collapse
Affiliation(s)
- Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Nikolaos Bailis
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Michael Unger
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Thies H Jochimsen
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany; and
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany;
- Institute of Medical Science and Technology (IMSaT), University of Dundee, Dundee, Scotland
| |
Collapse
|
4
|
Kothawala AA, Baskaran D, Arunachalam K, Thittai AK. Ultrasound-Based Regularized Log Spectral Difference Method For Monitoring Microwave Hyperthermia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6387-6390. [PMID: 31947304 DOI: 10.1109/embc.2019.8857139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The feasibility of using normalized cumulative difference attenuation (NCDA) map for tracking the spatial and temporal evolution of temperature during microwave hyperthermia experiment on in-vitro phantoms is explored in this study. The NCDA maps were estimated from the beamformed ultrasound radio frequency (RF) data using a regularized log spectral difference (RLSD) technique. The NCDA maps were estimated at different time instants for the entire period of the experiment. The contour maps of the NCDA and the ground truth temperature map, obtained using an infra-red(IR) thermal camera corresponding to the ultrasound imaging plane, showed that NCDA was able to locate the axial and lateral co-ordinates of the hotspot with the error of <; 1.5 mm axially and <; 0.1 mm laterally. The error in the estimated hotspot area was less than 8 %. This preliminary in-vitro study suggests that NCDA maps estimated using RLSD may have potential in evaluating the spatio-temporal evolution of temperature and may help in the development of ultrasound-based image-guided temperature monitoring system for microwave hyperthermia.
Collapse
|
5
|
Zhang S, Shang S, Han Y, Gu C, Wu S, Liu S, Niu G, Bouakaz A, Wan M. Ex Vivo and In Vivo Monitoring and Characterization of Thermal Lesions by High-Intensity Focused Ultrasound and Microwave Ablation Using Ultrasonic Nakagami Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1701-1710. [PMID: 29969420 DOI: 10.1109/tmi.2018.2829934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The feasibility of ultrasonic Nakagami imaging to evaluate thermal lesions by high-intensity focused ultrasound and microwave ablation was explored in ex vivo and in vivo liver models. Dynamic changes of the ultrasonic Nakagami parameter in thermal lesions were calculated, and ultrasonic B-mode and Nakagami images were reconstructed simultaneously. The contrast-to-noise ratio (CNR) between thermal lesions and normal tissue was used to estimate the contrast resolution of the monitoring images. After thermal ablation, a bright hyper-echoic region appeared in the ultrasonic B-mode and Nakagami images, identifying the thermal lesion. During thermal ablation, mean values of Nakagami parameter showed an increasing trend from 0.72 to 1.01 for the ex vivo model and 0.54 to 0.72 for the in vivo model. After thermal ablation, mean CNR values of the ultrasonic Nakagami images were 1.29 dB (ex vivo) and 0.80 dB (in vivo), significantly higher ( ) than those for B-mode images. Thermal lesion size, assessed using ultrasonic Nakagami images, shows a good correlation to those obtained from the gross-pathology images (for the ex vivo model: length, = 0.96; width, = 0.90; for the in vivo model: length, = 0.95; width, = 0.85). This preliminary study suggests that ultrasonic Nakagami parameter may have a potential use in evaluating the formation of thermal lesions with better image contrast. Moreover, ultrasonic Nakagami imaging combined with B-mode imaging may be utilized as an alternative modality in developing monitoring systems for image-guided thermal ablation treatments.
Collapse
|
6
|
Kessler DE, Weiss J, Rempp H, Pereira PL, Nikolaou K, Clasen S, Hoffmann R. In vitro artifact assessment of an MR-compatible, microwave antenna device for percutaneous tumor ablation with fluoroscopic MRI-sequences. MINIM INVASIV THER 2017; 27:60-68. [PMID: 29231067 DOI: 10.1080/13645706.2017.1414062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate artifact configuration and diameters of a magnetic resonance (MR) compatible microwave (MW) applicator using near-realtime MR-fluoroscopic sequences for percutaneous tumor ablation procedures. MATERIAL AND METHODS Two MW applicators (14 G and 16 G) were tested in an ex-vivo phantom at 1.5 T with two 3 D fluoroscopic sequences: T1-weighted spoiled Gradient Echo (GRE) and T1/T2-weighted Steady State Free Precession (SSFP) sequence. Applicator orientation to main magnetic field (B0), slice orientation and phase encoding direction (PED) were systematically varied. The influence of these variables was assessed with ANOVA and post-hoc testing. RESULTS The artifact was homogenous along the whole length of both antennas with all tested parameters. The tip artifact diameter of the 16 G antenna measured 6.9 ± 1.0 mm, the shaft artifact diameter 8.6 ± 1.2 mm and the Tip Location Error (TLE) was 1.5 ± 1.2 mm.The tip artifact diameter of the 14 G antenna measured 7.7 ± 1.2 mm, the shaft artifact diameter 9.6 ± 1.5 mm and TLE was 1.6 ± 1.2 mm. Orientation to B0 had no statistically significant influence on tip artifact diameters (16 G: p = .55; 14 G: p = .07) or TLE (16 G: p = .93; 14 G: p = .26). GRE sequences slightly overestimated the antenna length with TLE(16 G) = 2.6 ± 0.5 mm and TLE(14 G) = 2.7 ± 0.7 mm. CONCLUSIONS The MR-compatible MW applicator's artifact seems adequate with an acceptable TLE for safe applicator positioning during near-realtime fluoroscopic MR-guidance.
Collapse
Affiliation(s)
- David-Emanuel Kessler
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| | - Jakob Weiss
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| | - Hansjörg Rempp
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| | - Philippe L Pereira
- b Department of Radiology, Minimally Invasive Therapies and Nuclear Medicine , SLK-Kliniken Heilbronn , Heilbronn , Germany
| | - Konstantin Nikolaou
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| | - Stephan Clasen
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| | - Rüdiger Hoffmann
- a Department of Diagnostic and Interventional Radiology , Eberhard Karls University , Tuebingen , Germany
| |
Collapse
|
7
|
Ziv O, Goldberg SN, Nissenbaum Y, Sosna J, Weiss N, Azhari H. Optical flow and image segmentation analysis for noninvasive precise mapping of microwave thermal ablation in X-ray CT scans - ex vivo study. Int J Hyperthermia 2017; 34:744-755. [PMID: 28866952 DOI: 10.1080/02656736.2017.1375160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop image processing algorithms for noninvasive mapping of microwave thermal ablation using X-ray CT. METHODS Ten specimens of bovine liver were subjected to microwave ablation (20-80 W, 8 min) while scanned by X-ray CT at 5 s intervals. Specimens were cut and manually traced by two observers. Two algorithms were developed and implemented to map the ablation zone. The first algorithm utilises images segmentation of Hounsfield units changes (ISHU). The second algorithm utilises radial optical flow (ROF). Algorithm sensitivity to spatiotemporal under-sampling was assessed by decreasing the acquisition rate and reducing the number of acquired projections used for image reconstruction in order to evaluate the feasibility of implementing radiation reduction techniques. RESULTS The average radial discrepancy between the ISHU and ROF contours and the manual tracing were 1.04±0.74 and 1.16±0.79mm, respectively. When diluting the input data, the ISHU algorithm retained its accuracy, ranging from 1.04 to 1.79mm. By contrast, the ROF algorithm performance became inconsistent at low acquisition rates. Both algorithms were not sensitive to projections reduction, (ISHU: 1.24±0.83mm, ROF: 1.53±1.15mm, for reduction by eight fold). Ablations near large blood vessels affected the ROF algorithm performance (1.83±1.30mm; p < 0.01), whereas ISHU performance remained the same. CONCLUSION The two suggested noninvasive ablation mapping algorithms can provide highly accurate contouring of the ablation zone at low scan rates. The ISHU algorithm may be more suitable for clinical practice as it appears more robust when radiation dose reduction strategies are employed and when the ablation zone is near large blood vessels.
Collapse
Affiliation(s)
- Omri Ziv
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| | - S Nahum Goldberg
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel.,c Department of Radiology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Yitzhak Nissenbaum
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel
| | - Jacob Sosna
- b Department of Radiology , Hadassah Medical Center, Hebrew University , Jerusalem , Israel.,c Department of Radiology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Noam Weiss
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| | - Haim Azhari
- a Department of Biomedical Engineering , Technion - IIT , Haifa , Israel
| |
Collapse
|
8
|
Mountford PA, Smith WS, Borden MA. Fluorocarbon nanodrops as acoustic temperature probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10656-10663. [PMID: 26359919 DOI: 10.1021/acs.langmuir.5b02308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work investigated the use of superheated fluorocarbon nanodrops for ultrasound thermal imaging and the use of mixed fluorocarbons for tuning thermal and acoustic thresholds for vaporization. Droplets were fabricated by condensing phospholipid-coated microbubbles containing C3F8 and C4F10 mixed at various molar ratios. Vaporization temperatures first were measured in a closed system by optical transmission following either isothermal pressure release or isobaric heating. The vaporization temperature was found to depend linearly on the percentage of C4F10 in the droplet core, indicating excellent tunability under these fluorocarbon-saturated conditions. Vaporization temperatures were then measured in an open system using contrast-enhanced ultrasound imaging, where it was found that the mixed droplets behaved like pure C4F10 drops. Additionally, the critical mechanical index for vaporization was measured at the limits of therapeutic hyperthermia (37 and 60 °C), and again the mixed droplets were found to behave like pure C4F10 drops. These results suggested that C3F8 preferentially dissolves out of the droplet core in open systems, as shown by a simple mass transfer model of multicomponent droplet dissolution. Finally, proof-of-concept was shown that pure C4F10 nanodrops can be used as an acoustic temperature probe. Overall, these results not only demonstrate the potential of superheated fluorocarbon emulsions for sonothermetry but also point to the limits of tunability for fluorocarbon mixtures owing to preferential release of the more soluble species to the atmosphere.
Collapse
Affiliation(s)
- Paul A Mountford
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - William S Smith
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Zhang S, Li C, Zhou F, Wan M, Wang S. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:959-970. [PMID: 24866603 DOI: 10.7863/ultra.33.6.959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This work explored the feasibility of using ultrasonic Nakagami imaging to enhance the contrast between thermal lesions and bubbles induced by high-intensity focused ultrasound (US) in a transparent tissue-mimicking phantom at different acoustic power levels. METHODS The term "lesion-to-bubble ratio" was proposed and defined as the ratio of the scattered power from the thermal lesion to the scattered power from the bubbles calculated in the various monitoring of images for high-intensity focused US. Two-dimensional radiofrequency data backscattered from the exposed region were captured by a modified diagnostic US scanner to estimate the Nakagami statistical parameter, m, and reconstruct the ultrasonic B-mode images and Nakagami parameter images. The dynamic changes in the lesion-to-bubble ratio over the US exposure procedure were calculated simultaneously and compared among video photos, B-mode images, and Nakagami images for monitoring of high-intensity focused US. RESULTS After a small thermal lesion was induced by high-intensity focused US in the phantom, the lesion-to-bubble ratio values corresponding to the video photo, B-mode image, and Nakagami image were 5.3, 1, and 9.8 dB, respectively. When a large thermal lesion appeared in the phantom, the ratio values increased to 7.2, 3, and 14 dB. During US exposure, the ratio values calculated for the video photo, B-mode image, and Nakagami image began to increase gradually and rose to peak values of 8.3, 2.9, and 14.8 dB at the end of the US exposure. CONCLUSIONS This preliminary study on a tissue-mimicking phantom suggests that Nakagami imaging may have a potential use in enhancing the lesion-to-bubble ratio for monitoring high-intensity focused US. Further studies in vivo and in vitro will be needed to evaluate the potential applications for high-intensity focused US.
Collapse
Affiliation(s)
- Siyuan Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Li
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fanyu Zhou
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Supin Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Zucconi F, Colombo PE, Pasetto S, Lascialfari A, Ticca C, Torresin A. Analysis and reduction of thermal dose errors in MRgFUS treatment. Phys Med 2014; 30:111-6. [DOI: 10.1016/j.ejmp.2013.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 02/27/2013] [Accepted: 04/25/2013] [Indexed: 11/27/2022] Open
|
11
|
Zhang S, Zhou F, Wan M, Wei M, Fu Q, Wang X, Wang S. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:4836-4844. [PMID: 22712954 DOI: 10.1121/1.4711005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The acoustic posterior shadowing effects of bubbles influence the accuracy for defining the location and range of ablated thermal lesions during focused ultrasound surgery when using ultrasonic monitoring imaging. This paper explored the feasibility of using Nakagami distribution to evaluate the ablated region induced by focused ultrasound exposures at different acoustic power levels in transparent tissue-mimicking phantoms. The mean value of the Nakagami parameter m was about 0.5 in the cavitation region and increased to around 1 in the ablated region. Nakagami images were not subject to significant shadowing effects of bubbles. Ultrasound-induced thermal lesions observed in the photos and Nakagami images were overshadowed by bubbles in the B-mode images. The lesion size predicted in the Nakagami images was smaller than that predicted in the photos due to the sub resolvable effect of Nakagami imaging at the interface. This preliminary study on tissue-mimicking phantom suggested that the Nakagami parameter m may have the potential use in evaluating the formation of ultrasound-induced thermal lesion when the shadowing effect of bubbles is strong while the thermal lesion was small. Further studies in vivo and in vitro will be needed to evaluate the potential application.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Role of MRI in Minimally Invasive Focal Ablative Therapy for Prostate Cancer. AJR Am J Roentgenol 2011; 197:W90-6. [PMID: 21701001 DOI: 10.2214/ajr.10.5946] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Zhang S, Wan M, Zhong H, Xu C, Liao Z, Liu H, Wang S. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1828-44. [PMID: 19716225 DOI: 10.1016/j.ultrasmedbio.2009.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 05/09/2023]
Abstract
This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband noise at the same time. These bubble activities caused fluctuations in IBS and attenuation coefficient during HIFU treatment. After HIFU, IBS and attenuation coefficient decreased gradually accompanied by the fadeout of bright hyperechoic spot in the B-mode and differential IBS image, but were still higher than normal when they were stable. The increases of IBS and attenuation coefficient were greater when using higher acoustic power or a higher duty cycle of the therapeutic emission. These experiments indicated that the bubble activities had the dominant effects on the transient characteristics of IBS and attenuation. This should be taken into consideration when using the dynamic acoustic-property changes for the potentially real-time monitoring imaging of HIFU treatment.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Wang P, Brace CL, Converse MC, Webster JG. Tumor boundary estimation through time-domain peaks monitoring: numerical predictions and experimental results in tissue-mimicking phantoms. IEEE Trans Biomed Eng 2009; 56:2634-41. [PMID: 19567338 DOI: 10.1109/tbme.2009.2025963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A method to estimate the boundary of a tumor using an interstitial microwave probe was evaluated in numerical and phantom models. This method utilizes time-domain signal reflection from the tumor/liver interface to provide information about tumor boundary in both radial and axial directions. Using computational experiments, tumors with radial diameters up to 25 mm were estimated with less than 1 mm error. Axial diameters were estimated with at most 5 mm error. Accuracy seemed to increase with radial diameter but decreased with axial diameter. Phantom experiments confirmed the computational results. These early results indicate that the proposed method may be used to estimate tumor boundary in both radial and axial dimensions without imaging. The technique may also be applicable in other situations that contain dielectric contrast between a volume of tissue and its background, such as monitoring tumor ablation growth. Additional work is needed to validate and optimize this method in tumor models.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
16
|
O'Rourke AP, Haemmerich D, Prakash P, Converse MC, Mahvi DM, Webster JG. Current status of liver tumor ablation devices. Expert Rev Med Devices 2008; 4:523-37. [PMID: 17605688 DOI: 10.1586/17434440.4.4.523] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The liver is a common site of disease for both primary and metastatic cancer. Since most patients have a disease that is not amenable to surgical resection, tumor ablation modalities are increasingly being used for treatment of liver cancer. This review describes the current status of ablative technologies used as alternatives for resection, clinical experience with these technologies, currently available devices and design rules for the development of new devices and the improvement of existing ones. It focuses on probe design for radiofrequency ablation, microwave ablation and cryoablation, and compares the advantages and disadvantages of each ablation modality.
Collapse
Affiliation(s)
- Ann P O'Rourke
- Department of Surgery, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Converse MC, Hou M, Mahvi DM, Webster JG. Feasibility study of tumor size estimation through time domain peak monitoring. IEEE Trans Biomed Eng 2008; 55:230-6. [PMID: 18232366 DOI: 10.1109/tbme.2007.899308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new ultrawideband (UWB) microwave method to estimate tumor size based upon detection of the tumor/liver interface is proposed. This method involves monitoring the response of a broadband pulse launched down a coaxial treatment antenna and radiated into the tumor. By monitoring the peak in the returned signal, and estimating the propagation velocity within the tumor, the location of the tumor/liver interface can be determined and the size of a spherical lesion estimated. The feasibility of this technique is demonstrated by finite element (FE) electromagnetic simulations of a spherical tumor in the liver. Robustness to noise is also investigated as well as the effects of insertion depth. The promising outcome of this feasibility study suggests that further development of this technique should be pursued.
Collapse
Affiliation(s)
- Mark C Converse
- Department of Surgery, University of Wisconsin, Madison 53792, USA.
| | | | | | | |
Collapse
|
18
|
Evans J. Ablative and catheter-delivered therapies for colorectal liver metastases (CRLM). Eur J Surg Oncol 2007; 33 Suppl 2:S64-75. [DOI: 10.1016/j.ejso.2007.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 09/26/2007] [Indexed: 01/26/2023] Open
|