1
|
Allen SK, Doyle S. Chapter 2: Non-invasive prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 2024; 97:102544. [PMID: 39255551 DOI: 10.1016/j.bpobgyn.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Non-invasive prenatal diagnosis of monogenic disorders is becoming integrated into routine clinical care for many indications. This is carried out by testing cell-free DNA extracted from the plasma portion of a maternal blood sample. The cell-free DNA is low in concentration, and consists of a mixture of maternal and fetally-derived DNA which are not easy to separate. Methods used therefore need to be rapid, sensitive and specific, including real-time PCR, digital PCR and next generation sequencing with complex algorithms. Testing may be required for pregnancies with an increased chance of a monogenic disorder due to family history or carrier status, or where there are specific abnormalities identified by ultrasound scan. In these situations, testing is considered to be diagnostic and therefore does not require confirmation by invasive testing. With increased access to genomic technologies, and more diagnoses for rare disease patients, future demand for NIPD and possibilities during pregnancy will continue.
Collapse
Affiliation(s)
- Stephanie K Allen
- Birmingham Women's and Children's NHS Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TG, UK.
| | - Samantha Doyle
- The Department of Perinatal Genetics, The National Maternity Hospital, Dublin, 2, Ireland; UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Vora NL, Langlois S, Chitty LS. Current controversy in prenatal diagnosis: The use of cfDNA to screen for monogenic conditions in low risk populations is ready for clinical use. Prenat Diagn 2024; 44:389-397. [PMID: 37991340 DOI: 10.1002/pd.6469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Noninvasive cfDNA testing for monogenic disorders (sgNIPT) has become integrated into the care of pregnant women at increased risk based on carrier status, known family history, or ultrasound anomalies. The availability of commercial tests for common autosomal recessive and de novo autosomal dominant conditions has led to the use of these tests in low-risk pregnancies. However, is the technology ready for use in this low-risk population? This report is a summary of the debate on this topic at the 27th International Conference on Prenatal Diagnosis and Therapy. Both expert debaters provided strong arguments in favor and against the use of sgNIPT in low-risk pregnancies. The argument in favor of sgNIPT for autosomal recessive conditions is that it allows the identification of affected pregnancies without the need for involving the partner in testing. Arguments for sgNIPT for autosomal dominant conditions include identification of affected fetuses that would have either presented later in pregnancy with fetal anomalies or not been detected prenatally given normal ultrasounds, respect for patient autonomy and patient desire for information. Strong arguments were made against offering sgNIPT screening. Given that traditional carrier screening for recessive conditions can be carried out in many jurisdictions, the added value of sgNIPT has not been clearly demonstrated. Arguments against sgNIPT for autosomal dominant conditions included the total lack of clinical validation studies and the risk of false reassurance in cases of negative results and unnecessary invasive procedures in cases of false positive results. Although there is a desire to take advantage of new technologies to improve the detection of monogenic disorders in low-risk populations, based on the discussion and the audience vote, it appears premature to offer sgNIPT to all low risk pregnant women. Further clinical validation studies are needed prior to broad implementation.
Collapse
Affiliation(s)
- Neeta L Vora
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lyn S Chitty
- Genetics and Genomic Medicine, UCL Institute of Child Health and Great Ormond Street NHS Foundation Trust, London, England
| |
Collapse
|
3
|
Adams S, Llorin H, Maher O, Dean M, Dobson LJ, Gbur S, Foster J, McElhinney S, Evans C, Kelly H, Wilkins-Haug L, Guseh S, Gray KJ. Single gene non-invasive prenatal screening for autosomal dominant conditions in a high-risk cohort. Prenat Diagn 2023; 43:1110-1119. [PMID: 37021343 DOI: 10.1002/pd.6351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE To determine the utility of single gene non-invasive prenatal screening (NIPS-SGD) in a high-risk reproductive genetics clinic. METHODS A clinical pilot for NIPS-SGD was conducted from March 2020 to November 2021. A NIPS-SGD panel assessing pathogenic variants in 30 genes was offered to pregnant individuals for the following indications: (1) advanced sperm age ≥40 years, (2) nuchal translucency (NT) ≥ 3.5 mm, (3) fetal anomaly, or (4) family history of a condition covered by the panel. Diagnostic testing was offered concurrently. RESULTS NIPS-SGD was ordered for 253 individuals: 88 (34.8%) for fetal anomalies, 96 (37.9%) for advanced sperm age, 37 (14.6%) for increased NT, and 5 (2.0%) for family history. Among 228 (90.1%) completed tests, 8 (3.5%) were positive. Diagnostic testing for 78 individuals revealed no false positive or negative results. Of 41 (25.9%) individuals who received a molecular diagnosis, 34 (82.9%) were outside the scope of NIPS-SGD. Positive NIPS-SGD altered medical management in five cases. CONCLUSIONS NIPS-SGD in a high-risk population can lead to earlier prenatal diagnosis, enhanced surveillance, and targeted genetic analysis, but should not replace clinically indicated diagnostic testing. Potential incidental findings include parental diagnoses and misattributed parentage.
Collapse
Affiliation(s)
- Sophie Adams
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Llorin
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia Maher
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Dean
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lori J Dobson
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sam Gbur
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Judith Foster
- Division of Maternal-Fetal Medicine, Newton Wellesley Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah McElhinney
- Division of Maternal-Fetal Medicine, Newton Wellesley Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chloe Evans
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Kelly
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Louise Wilkins-Haug
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Guseh
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn J Gray
- Center for Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
5
|
Hanson B, Scotchman E, Chitty LS, Chandler NJ. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders. Clin Sci (Lond) 2022; 136:1615-1629. [PMID: 36383187 PMCID: PMC9670272 DOI: 10.1042/cs20210380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, U.K
| | - Natalie J. Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| |
Collapse
|