Hill EW, Stoffel MA, McGivney BA, MacHugh DE, Pemberton JM. Inbreeding depression and the probability of racing in the Thoroughbred horse.
Proc Biol Sci 2022;
289:20220487. [PMID:
35765835 PMCID:
PMC9240673 DOI:
10.1098/rspb.2022.0487]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.
Collapse