1
|
Makoudjou MA, Fico E, Rosso P, Triaca V, De Simone L, Rossetti D, Cattani F, Allegretti M, Tirassa P. ProNGF processing in adult rat tissues and bioactivity of NGF prodomain peptides. FEBS Open Bio 2024; 14:643-654. [PMID: 38429912 PMCID: PMC10988682 DOI: 10.1002/2211-5463.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.
Collapse
Affiliation(s)
- Marie Anne Makoudjou
- Cellular and Molecular Biology, Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Elena Fico
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Campus A. Buzzati‐Traverso, MonterotondoRomeItaly
| | | | | | | | | | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)RomeItaly
| |
Collapse
|
2
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
3
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
4
|
Rafieva LM, Shubin AV, Gasanov EV. [Precursors and propeptides of neurotrophic factors as the modulators of biological activity of its mature forms]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:515-23. [PMID: 23342485 DOI: 10.1134/s1068162012050123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we review the problems of neurotrophic factors' folding, the role of its precursors (proneurotrophins) and the contribution of elements deleted during its maturation (propeptides) in biological functioning of these growth factors.
Collapse
|
5
|
Kawaja MD, Smithson LJ, Elliott J, Trinh G, Crotty AM, Michalski B, Fahnestock M. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein. J Comp Neurol 2011; 519:2522-45. [PMID: 21456011 DOI: 10.1002/cne.22629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury.
Collapse
Affiliation(s)
- Michael D Kawaja
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: "Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates." Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. According to this definition almost 70 genes can be distinguished in the mammalian genome, encoding neuropeptide precursors and a multitude of bioactive neuropeptides. In addition, among cytokines, peptide hormones, and growth factors there are several subfamilies of peptides displaying most of the hallmarks of neuropeptides, for example neural chemokines, cerebellins, neurexophilins, and granins. All classical neuropeptides as well as putative neuropeptides from the latter families are presented as a resource.
Collapse
Affiliation(s)
- J Peter H Burbach
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Montaño JA, Pérez-Piñera P, García-Suárez O, Cobo J, Vega JA. Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech 2010; 73:513-29. [PMID: 19839059 DOI: 10.1002/jemt.20790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and Adelta nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity.
Collapse
Affiliation(s)
- Juan A Montaño
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio, Murcia, Spain
| | | | | | | | | |
Collapse
|
8
|
García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217:1-15. [PMID: 20456524 DOI: 10.1111/j.1469-7580.2010.01227.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
Collapse
|
9
|
Burbach JPH. Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol 2009; 626:27-48. [PMID: 19837055 DOI: 10.1016/j.ejphar.2009.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/17/2009] [Accepted: 10/06/2009] [Indexed: 01/04/2023]
Abstract
In the early 1970's the term "neuropeptide" was used for the first time by David de Wied for peptides related to peptide hormones but with non-endocrine biological activity in the brain. This early notion appreciated neuropeptides as a specific class of chemical signals produced by neurons, released in a regulated fashion and acting on other neural cells. As we define them today, neuropeptides are encoded by over 70 genes in mammalian genomes. Neuropeptides can be clustered in at least 10 subfamilies according to structural features, for which often shared or related receptors exist. A complete overview is provided through hyperlinks to bioinformatic databases on genome and transcripts, protein structure and brain expression. Other proteineous signaling molecules in the nervous system which originally were discovered in other biological systems, particularly chemokines, growth factors and peptide hormones, share the hallmarks of classical neuropeptides and may be considered as neuropeptides as well.
Collapse
Affiliation(s)
- J Peter H Burbach
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, AB Utrecht, The Netherlands.
| |
Collapse
|
10
|
Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 2009; 65:11-22. [PMID: 19523993 DOI: 10.1016/j.neures.2009.06.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and other members of the protein family of neurotrophins have been implicated in a multitude of processes that are important for neuronal development and synaptic plasticity in the rodent central nervous system. In comparison to the wealth of information available with respect to the biological functions of neurotrophins, our knowledge regarding the processes that govern synaptic secretion of neurotrophins is scarce. Using live cell imaging of GFP-tagged neurotrophins in primary neurons, immunocytochemical detection of endogenous BDNF in fixed cells, and by blocking the action of endogenously released BDNF by means of TrkB receptor bodies in living neurons, several studies in recent years have allowed to better understand the time course and the mechanisms of synaptic secretion of neurotrophins. This review will summarize the current knowledge regarding the intracellular processing of proneurotrophins, the targeting of neurotrophin vesicles to axons and dendrites, and the mechanisms of activity-dependent secretion of BDNF at synapses. Since these processes are known to be cell type dependent, special emphasis is given to observations gained from experiments in primary neurons.
Collapse
|
11
|
Insulinostatic activity of cerebellin--evidence from in vivo and in vitro studies in rats. ACTA ACUST UNITED AC 2009; 157:19-24. [PMID: 19481574 DOI: 10.1016/j.regpep.2009.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 11/20/2022]
Abstract
Cerebellin (CER) is a neuromodulatory hexadecapeptide that originates from the precursor protein precerebellin (Cbln1). Four highly homologous isoforms of Cbln are known (Cbln1-Cbln4), which are expressed in the central nervous system (CNS) and in peripheral tissues. CER modulates synaptic structure formation in the CNS, whereas in the peripheral tissues CER regulates catecholamine secretion. Cbln is also expressed in the pancreas; however, its function in the pancreas is unknown. Here, we demonstrate the role of CER in regulating insulin secretion in vivo and in vitro. We identified Cbln1 and Cbln3 transcripts in rat pancreatic islets and detected Cbln-immunoreactivity, predominantly located in the periphery of the rat endocrine pancreas. In vivo, CER reduced plasma insulin levels in rats after 1 and 2 h. CER decreased insulin secretion from isolated rat pancreatic islets at high (11 mM), but not at low (3.33 mM) glucose concentration. CER inhibited stimulated insulin secretion from clonal rat insulinoma (INS-1) cells, reduced forskolin-induced production of cAMP and intracellular calcium concentration. Our study demonstrates for the first time that Cbln1 and Cbln3 are expressed in the rat endocrine pancreas. Furthermore, we identify CER as an insulinostatic factor, which decreases intracellular cAMP production and calcium in INS-1 cells.
Collapse
|
12
|
|