1
|
Tohidast M, Amini M, Doustvandi MA, Hosseini SS, Bilan F, Mozammel N, Sameti P, Mokhtarzadeh AA, Baradaran B. Simultaneous effect of miR-21 suppression and miR-143 restoration on inhibition of proliferation and migration in SW-480 colorectal cancer cells. BIOIMPACTS : BI 2024; 15:30255. [PMID: 39963562 PMCID: PMC11830141 DOI: 10.34172/bi.30255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/20/2025]
Abstract
Introduction Colorectal cancer (CRC) is regarded as a serious global issue and is presently ranked second in the classification of gastrointestinal (GI) malignancies, with fast incidence and high mortality patterns. As the key "gene expression regulators", miRNAs critically contribute to tumor progression and development. For example, miR-21 (an oncomiR) and miR-143 (a tumor suppressor) are dysregulated through colorectal tumorigenesis. Accordingly, this study assesses the concomitant therapeutic impacts of "miR-21 suppression" (anti-miR-21) and "miR-143 restoration" (miR-143) on CRC cell proliferation and migration. Methods SW-480 cell lines (with overexpressed "miR-21" and downregulated "miR-143") were transfected via "anti-miR-21" and "miR-143" mimics, either independently or in combination. Next, cell viability assessment was performed through MTT assay. Then, apoptosis induction was examined with "Annexin V-FITC Kit", and via Propidium Iodide (PI) assay and DAPI staining. In the next step, "cell cycle condition" and "autophagy induction" were studied through flow cytometry. "Wound-healing assay" and "clonogenic assay" were employed to investigate the migration and proliferation of tumor cells. Ultimately, qRT-PCR was utilized to quantify the intensity of the effects of "anti-miR-21" and "miR-143" on gene expression profiles. Results Downregulation of "miR-21" expression and overexpression of "miR-143" were found to synergistically reduce the viability (while elevating apoptosis) of SW-480 cells by modulating Bcl-2 and Bax expression profiles. Combined therapy increased the number of cells in the sub-G1 phase and reduced cell proliferation by modulating expression levels of PTEN and AKT-1. Additionally, miR-21 suppression and miR-143 restoration concomitantly reduced cell migration by modulating the expression of MMP-9. Conclusion Considering anti-cancer effects on cell growth, survival, and migration, it can be concluded that the concomitant suppression of "anti-miR-21" and "miR-143 restoration" might be introduced as a promising method for the therapy of CRC.
Collapse
Affiliation(s)
- Maryam Tohidast
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Mozammel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouryia Sameti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Li J, Li H, Yang Y, Sen Y, Ye J. miRNA-143 as a potential biomarker in the detection of bladder cancer: a meta-analysis. Future Oncol 2024; 20:1275-1287. [PMID: 38722138 PMCID: PMC11318679 DOI: 10.2217/fon-2023-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 06/12/2024] Open
Abstract
Aim: This study aimed to systematically evaluate the value of miRNA-143 in the early detection of bladder cancer (BCa). Methods: CNKI, WanFang, PubMed and Wiley Online Library databases were explored according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. A random-effects model was used to obtain pooled sensitivity, specificity and other related indicates. Results: Six studies were included for analysis. The overall pooled sensitivity and specificity were 0.80 (95% CI: 0.74-0.85) and 0.85 (95% CI: 0.78-0.91), and the area under the curve was 0.88 (95% CI: 0.85-0.91). Coupled with miR-100, it showed better diagnostic power (area under the curve: 0.95). Conclusion: miRNA-143 may serve as a promising noninvasive tool for the early detection of BCa.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Haonan Li
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yutao Yang
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Sen
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jufeng Ye
- Department of Public Health, Southern Medical University, No.1023, ShaTai South Road, Guangzhou City, Guangdong Province, 510515, China
| |
Collapse
|
3
|
Konstantopoulos G, Leventakou D, Saltiel DR, Zervoudi E, Logotheti E, Pettas S, Karagianni K, Daiou A, Hatzistergos KE, Dafou D, Arsenakis M, Psyrri A, Kottaridi C. HPV16 E6 Oncogene Contributes to Cancer Immune Evasion by Regulating PD-L1 Expression through a miR-143/HIF-1a Pathway. Viruses 2024; 16:113. [PMID: 38257813 PMCID: PMC10819893 DOI: 10.3390/v16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Human Papillomaviruses have been associated with the occurrence of cervical cancer, the fourth most common cancer that affects women globally, while 70% of cases are caused by infection with the high-risk types HPV16 and HPV18. The integration of these viruses' oncogenes E6 and E7 into the host's genome affects a multitude of cellular functions and alters the expression of molecules. The aim of this study was to investigate how these oncogenes contribute to the expression of immune system control molecules, using cell lines with integrated HPV16 genome, before and after knocking out E6 viral gene using the CRISPR/Cas9 system, delivered with a lentiviral vector. The molecules studied are the T-cell inactivating protein PD-L1, its transcription factor HIF-1a and the latter's negative regulator, miR-143. According to our results, in the E6 knock out (E6KO) cell lines an increased expression of miR-143 was recorded, while a decrease in the expression of HIF-1a and PD-L1 was exhibited. These findings indicate that E6 protein probably plays a significant role in enabling cervical cancer cells to evade the immune system, while we propose a molecular pathway in cervical cancer, where PD-L1's expression is regulated by E6 protein through a miR-143/HIF-1a axis.
Collapse
Affiliation(s)
- Georgios Konstantopoulos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Danai Leventakou
- 2nd Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Despoina-Rozi Saltiel
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Efthalia Zervoudi
- Research Unit—Oncology Unit, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eirini Logotheti
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Spyros Pettas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Angeliki Daiou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Konstantinos E. Hatzistergos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Minas Arsenakis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (D.-R.S.); (E.L.); (S.P.); (K.K.); (K.E.H.); (D.D.); (M.A.)
| |
Collapse
|
4
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
6
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Asghariazar V, Kadkhodayi M, Mansoori B, Mohammadi A, Baradaran B. Restoration of miR-143 reduces migration and proliferation of bladder cancer cells by regulating signaling pathways involved in EMT. Mol Cell Probes 2022; 61:101794. [DOI: 10.1016/j.mcp.2022.101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
|