1
|
Ha B, Kang JH, Kim DH, Lee MY. Lipopolysaccharide-Induced Inflammatory Response and Its Prominent Suppression by Paspalum thunbergii Extract. Int J Mol Sci 2025; 26:1611. [PMID: 40004077 PMCID: PMC11855676 DOI: 10.3390/ijms26041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The extract of Paspalum thunbergii, a native perennial herb in Korea belonging to the rice family, was investigated for its anti-inflammatory activity and the underlying mechanisms driving its effects. Fifteen chemical components of the P. thunbergii extract, including rosmarinic acid and isoquercitrin, were identified using LC-MS. The extract showed antioxidative activity through DPPH and ABTS cation radical scavenging activity. The P. thunbergii extract significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. The extract inhibited the expression of lipopolysaccharide-induced iNOS and COX-2, which are inflammation-related enzymes. To explore the underlying anti-inflammatory mechanism, the expression levels of signal proteins related to MAPK, NF-κB, JAK/STAT, and Wnt/β-catenin signaling were measured. As a result, the P. thunbergii extract inhibited the expression of p-p38, and p-JNK increased by LPS in RAW 264.7 cells. Additionally, it decreased the expression of LPS-induced p-IKKβ and p-NF-κB p65 and prevented the migration of p-NF-κB into the nucleus caused by LPS. Notably, p-JAK1, p-STAT3, Wnt 3α, β-catenin, and p-GSK-3β protein expressions were also inhibited. Therefore, the prominent anti-inflammatory activity of the P. thunbergii extract may be via the MAPK, NF-κB, JAK/STAT, Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Bin Ha
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Ji-Hye Kang
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Do Hyun Kim
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
2
|
Tang R, Xiao G, Liu Y, Jia D, Zeng Z, Jia C, Li D, Li Y, Jiang J, Li S, Bi X. Integrated serum pharmacochemistry, pharmacokinetics, and network analysis to explore active components of BuShao Tiaozhi Capsule on hyperlipidemia. Front Pharmacol 2025; 15:1444967. [PMID: 39830346 PMCID: PMC11738623 DOI: 10.3389/fphar.2024.1444967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
BuShao Tiaozhi Capsule (BSTZC), a novel drug in China, has been used to treat hyperlipidemia (HLP) in clinical practice for many years. Despite our previous studies suggesting that BSTZC can treat HLP, there is a lack of a rapid and systematic method to explore its active components. Therefore, in this study, we aimed to investigate the active components and mechanisms of BSTZC in treating HLP by integrating serum pharmacology, pharmacokinetics, network analysis, and experimental validation. We first established UPLC fingerprints, calibrated 23 common peaks, and identified 13 common peaks, and the similarity was greater than 0.99 for 10 batches. A total of nine metabolites from BSTZC were identified in serum and considered as PK markers. The pharmacokinetic parameters of the PK markers were compared between the control group and the model group through the pharmacokinetics study to determine the dynamic changes of representative components in rats. Compared with the control group, the Cmax and AUC0→t of OXY, IVT, IVL, and KPF-3-G were significantly higher (P< 0.05); the AUC0→∞ of OXY, PN, and IVT was significantly higher (P< 0.05); and the t1/2 of IVT, SA, and KPF-3-G was significantly different (P< 0.05). In vivo experiments showed that BSTZC and its active components could effectively alleviate lipid metabolism disorders and liver injury, with obvious lipid-lowering effects. Further studies showed that BSTZC alleviated HLP by inhibiting the PI3K/Akt signaling pathway, which was consistent with the results of the network analysis study. Our results revealed the active components and mechanisms of BSTZC in the treatment of HLP, which could provide useful information to guide the clinical application of BSTZC.
Collapse
Affiliation(s)
- Ruiyin Tang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guanlin Xiao
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanchang Liu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Canchao Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dongmei Li
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yangxue Li
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jieyi Jiang
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Sumei Li
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Bi
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Gao S, Zhou C, Hou L, Xu K, Zhang Y, Wang X, Li J, Liu K, Xia Q. Narcissin induces developmental toxicity and cardiotoxicity in zebrafish embryos via Nrf2/HO-1 and calcium signaling pathways. J Appl Toxicol 2024; 44:344-354. [PMID: 37718569 DOI: 10.1002/jat.4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Narcissin is a natural flavonoid from some edible and traditional medicinal plants. It has been proven to have multiple biological functions and exhibits potential therapeutic effects on hypertension, cancer, and Alzheimer's disease. However, the toxicity of narcissin is largely unknown. Here, we revealed that narcissin treatment led to reduced hatchability, increased malformation rate, shorter body length, and slowed blood flow in zebrafish. Furthermore, bradycardia, pericardial edema, increased SV-BA distance, diminished stroke volume, ejection fraction, and ventricular short-axis shortening rate were also found. A large accumulation of ROS, increased apoptotic cells, and histopathological changes were detected in the heart region. Moreover, the gene expression profiles and molecular docking analysis indicated that Nrf2/HO-1 and calcium signaling pathways were involved in narcissin-induced toxicity. In conclusion, here we provide the first evidence that demonstrates narcissin-induced developmental toxicity and cardiotoxicity in zebrafish via Nrf2/HO-1 and calcium signaling pathways for the first time.
Collapse
Affiliation(s)
- Shuo Gao
- School of Pharmacy, Hebei University, Baoding, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chaoyi Zhou
- School of Pharmacy, Hebei University, Baoding, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Linhua Hou
- School of Pharmacy, Hebei University, Baoding, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kuo Xu
- Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianheng Li
- School of Pharmacy, Hebei University, Baoding, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Cui J, Fan Y, Lian D, Wang S, Wang M, Du Y, Li Y, Li L. Interaction of narcissoside with α-amylase from Bacillus subtilis and Porcine pancreatic by multi-spectral analysis and molecular dynamics simulation. LUMINESCENCE 2023. [PMID: 38038156 DOI: 10.1002/bio.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
In this work, interaction mechanism of narcissoside with two α-amylase from Bacillus subtilis (BSA) and Porcine pancreatic (PPA) are comparatively studied by multi-spectral analysis, molecular docking and molecular dynamics simulation. The results prove that narcissoside can statically quench fluorescence of BSA/PPA. Two complexes are mainly formed by hydrogen bond and van der Waals force. With the increase of temperature, the two complexes formed by narcissoside and two enzymes become unstable. At the same experimental temperature, the binding force of narcissoside to PPA is higher than that of BSA. The binding of narcissoside to PPA/BSA increases the hydrophobicity of microenvironment. Moreover, the secondary structure of PPA/BSA is mainly changed by decreasing the α-helix. The optimal binding modes of narcissoside with BSA/PPA are predicted by molecular docking, and the stability of the two complexes is evaluated by molecular dynamics simulations.
Collapse
Affiliation(s)
- Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
5
|
He M, Yasin K, Yu S, Li J, Xia L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. Int J Mol Sci 2023; 24:16348. [PMID: 38003540 PMCID: PMC10671751 DOI: 10.3390/ijms242216348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
To overcome the shortcomings of traditional extraction methods, such as long extraction time and low efficiency, and considering the low content and high complexity of total flavonoids in Artemisia absinthium L., in this experiment, we adopted ultrasound-assisted enzymatic hydrolysis to improve the yield of total flavonoids, and combined this with molecular docking and network pharmacology to predict its core constituent targets, so as to evaluate its antitumor activity. The content of total flavonoids in Artemisia absinthium L. reached 3.80 ± 0.13%, and the main components included Astragalin, Cynaroside, Ononin, Rutin, Kaempferol-3-O-rutinoside, Diosmetin, Isorhamnetin, and Luteolin. Cynaroside and Astragalin exert their cervical cancer inhibitory functions by regulating several signaling proteins (e.g., EGFR, STAT3, CCND1, IGFIR, ESR1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the anticancer activity of both compounds was associated with the ErbB signaling pathway and FoxO signaling pathway. MTT results showed that total flavonoids of Artemisia absinthium L. and its active components (Cynaroside and Astragalin) significantly inhibited the growth of HeLa cells in a concentration-dependent manner with IC50 of 396.0 ± 54.2 μg/mL and 449.0 ± 54.8 μg/mL, respectively. Furthermore, its active components can mediate apoptosis by inducing the accumulation of ROS.
Collapse
Affiliation(s)
| | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| |
Collapse
|
6
|
Yan J, Zeng H, Chen W, Zheng S, Luo J, Jiang H, Yang B, Farag MA, Lou H, Song L, Wu J. Effects of tree age on flavonoids and antioxidant activity in
Torreya grandis
nuts via integrated metabolome and transcriptome analyses. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
- National Center of Technology Innovation for Synthetic Biology Tianjin China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies University of Turku Turku Finland
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo P.B Egypt
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| |
Collapse
|
7
|
Citric Acid Changes the Fingerprint of Flavonoids and Promotes Their Accumulation in Phellinus igniarius (L.) Quél. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010068. [PMID: 36676017 PMCID: PMC9861953 DOI: 10.3390/life13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Phellinus igniarius is a valuable medicinal fungus. P. igniarius is rich in a variety of chemical compounds with medicinal value, among which are flavonoids. Therefore, increasing the content of flavonoids in P. igniarius is beneficial for its potential use in medicinal applications. This study demonstrated that exogenous treatment with citric acid (CA) could significantly increase flavonoid accumulation in P. igniarius. Additionally, we found that CA induced the biosynthesis of flavonoids in a concentration- and time-dependent manner. The flavonoid content could be increased up to 60.96 mg/g when using the treatment with 2.77 mM citric acid for 69.74 h, which was determined by using the response surface method. The changes in the fingerprint profiles of P. igniarius flavonoids with the treatment of CA as an exogenous inducer were also analyzed. In this study, the effect of citric acid as the exogenous inducer on the flavonoid content of P. igniarius was studied, and the processing conditions were optimized through the surface response curve. This approach provides novel insights and a theoretical basis for the production of high-quality P. igniarius.
Collapse
|
8
|
Fu RH, Tsai CW, Liu SP, Chiu SC, Chen YC, Chiang YT, Kuo YH, Shyu WC, Lin SZ. Neuroprotective Capability of Narcissoside in 6-OHDA-Exposed Parkinson's Disease Models through Enhancing the MiR200a/Nrf-2/GSH Axis and Mediating MAPK/Akt Associated Signaling Pathway. Antioxidants (Basel) 2022; 11:2089. [PMID: 36358461 PMCID: PMC9686521 DOI: 10.3390/antiox11112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
We assessed the antioxidant potential of narcissoside from Sambucus nigra flowers (elderflowers) in Parkinson's disease models in vitro and in vivo. The results showed that narcissoside lessened the 6-hydroxydopamine (6-OHDA)-induced increase in reactive oxygen species (ROS) and apoptosis in SH-SY5Y cells. In the 6-OHDA-exposed Caenorhabditis elegans model, narcissoside reduced degeneration of dopaminergic neurons and ROS generation, and also improved dopamine-related food-sensitive behavior and shortened lifespan. Moreover, NCS increased total glutathione (GSH) by increasing the expression of the catalytic subunit and modifier subunit of γ-glutamylcysteine ligase in cells and nematodes. Treatment with a GSH inhibitor partially abolished the anti-apoptotic ability of narcissoside. Furthermore, narcissoside diminished the 6-OHDA-induced phosphorylation of JNK and p38, while rising activities of ERK and Akt in resisting apoptosis. The antioxidant response element (ARE)-luciferase reporter activity analysis and electromobility gel shift assay showed that narcissoside promotes the transcriptional activity mediated by Nrf2. Finally, we found that narcissoside augmented the expression of miR200a, a translational inhibitor of the Nrf2 repressor protein Keap1. Downregulation of Nrf2 and miR200a by RNAi and anti-miR200a, respectively, reversed the neuroprotective ability of narcissoside. In summary, narcissoside can enhance the miR200a/Nrf2/GSH antioxidant pathway, alleviate 6-OHDA-induced apoptosis, and has the neuroprotective potential.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yen-Chuan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 97002, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan
| |
Collapse
|
9
|
Ha T, Kim MS, Kang B, Kim K, Hong SS, Kang T, Woo J, Han K, Oh U, Choi CW, Hong GS. Lotus Seed Green Embryo Extract and a Purified Glycosyloxyflavone Constituent, Narcissoside, Activate TRPV1 Channels in Dorsal Root Ganglion Sensory Neurons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3969-3978. [PMID: 35343690 DOI: 10.1021/acs.jafc.1c07724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several studies have documented the broad-spectrum bioactivities of a lotus seed (Plumula nelumbinis [PN]) green embryo extract. However, the specific bioactive components and associated molecular mechanisms remain largely unknown. This study aimed to identify the ion channel-activating mechanisms of PN extracts. Using fluorometric imaging and patch-clamp recordings, PN extracts were screened for calcium channel activation in dorsal root ganglion (DRG) neurons. The TRPV1 channels in DRG neurons were strongly activated by the PN extract (mean amplitude of 131 ± 45 pA at 200 μg/mL) and its purified glycosyloxyflavone narcissoside (401 ± 271 pA at 100 μM). Serial treatment with a 200 μg/mL PN extract in TRPV1-overexpressing HEK293T cells induced robust desensitization to 10 ± 10% of the initial current amplitude. Thus, we propose that the PN extract and narcissoside function as TRPV1 agonists. This new finding may advance our knowledge regarding the traditional and scientific functions of PN in human health and disease.
Collapse
Affiliation(s)
- Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mi-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bokeum Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seong Su Hong
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junhyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Morocho V, Valarezo LP, Tapia DA, Cartuche L, Cumbicus N, Gilardoni G. A Rare Dirhamnosyl Flavonoid and Other Radical-Scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem Biodivers 2021; 18:e2100260. [PMID: 34139055 DOI: 10.1002/cbdv.202100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
The phytochemistry of Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunth), both belonging to the family Capparaceae, were investigated in this study for the first time. Lupeol, betulin, lutein, stachydrine and quercetin-3,4'-di-O-rhamnoside were isolated from C. mollis, whereas C. scabridum afforded lupeol, lutein, stachydrine, β-sitosterol, stigmasterol, betonicine and narcissoside. All these compounds were purified by preparative liquid chromatography, in both open column and instrumental (MPLC) separation systems. Preparative TLC was also applied. They were all identified by 1 H- and 13 C-NMR experiments. The complete structure of the very rare flavonoid quercetin-3,4'-di-O-rhamnoside was fully elucidated through DEPT-135, COSY, HMQC and HMBC experiments, together with UV/VIS and FT-IR spectrophotometry. Complete NMR data for quercetin-3,4'-di-O-rhamnoside in deuterated methanol were presented here for the first time. All the extracts did not exert antioxidant activity at the maximum tested dose of 1 mg/mL. Three out of the nine isolated compounds exerted a good spectrum of antioxidant capacity, being narcissoside the most active against ABTS radicals, with SC50 =12.43 μM. It was followed by lutein and quercetin-3,4'-di-O-rhamnoside, with 40.92 μM and 46.10 μM, respectively.
Collapse
Affiliation(s)
- Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| | - Leslye Paola Valarezo
- Departamento de Química, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| | - David Andrés Tapia
- Departamento de Química, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| | - Luis Cartuche
- Departamento de Química, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| | - Nixon Cumbicus
- Departamento de Ciencias Biológicas y Agropecuaria, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja, Loja, 1101608, Ecuador
| |
Collapse
|