1
|
Aboudia A, Gadali KE, Rafya M, Abid K, Gahoual K, Zefzoufi M, Zehhar N, Mazoir N, Benkhalti F. Carcavrol From Thymus leptobotrys Essential Oil: Isolation, Comparative Antibacterial and Antioxidant Activities and Mechanistic Insights via Molecular Docking. Chem Biodivers 2025:e202403407. [PMID: 40047284 DOI: 10.1002/cbdv.202403407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Carvacrol is the main compound of several medicinal and aromatic plant essential oils (EOs), such as Thymus leptobotrys Murb which is a Moroccan endemic plant. Carvacrol is a versatile scaffold that serves as a central model for the design and synthesis of new drug substances with promising biological properties. In this context, this study aimed to isolate carvacrol from T. leptobotrys EO and evaluate its biological properties compared with EO. This later was analyzed using gas chromatography-mass spectrometry. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging and total antioxidant capacity (TAC) tests, while the antibacterial activity was determined against four pathogenic bacterial strains using the microdilution method. Carvacrol revealed a stronger antiradical capacity than EO, contrary to the TAC. Regarding the antibacterial activity, the results showed the highest activity for carvacrol against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis but lower against Pseudomonas aeruginosa. Molecular docking studies were conducted on bacterial DNA gyrase and nicotinamide adenine dinucleotide phosphate oxidase enzymes to investigate the potential mechanisms underlying carvacrol's bioactivity. The computational findings, together with antibacterial and antioxidant assays, provided complementary insights into carvacrol's interaction profile with these targets and its possible contribution to the observed biological activities.
Collapse
Affiliation(s)
- Aouatif Aboudia
- Department of biology, Bioresources and Food Safety Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Khadija El Gadali
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Meriem Rafya
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Khaoula Abid
- Department of biology, Bioresources and Food Safety Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Khaoula Gahoual
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Manal Zefzoufi
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Naima Zehhar
- Department of biology, Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Noureddine Mazoir
- Department of chemistry, Bioorganic Chemistry Team, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Fatiha Benkhalti
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
2
|
Bhattacharya S, Gupta N, Flekalová A, Gordillo-Alarcón S, Espinel-Jara V, Fernández-Cusimamani E. Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview. PLANTS (BASEL, SWITZERLAND) 2024; 13:1436. [PMID: 38891245 PMCID: PMC11174784 DOI: 10.3390/plants13111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic;
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Adéla Flekalová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Salomé Gordillo-Alarcón
- Department of Medicine, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Viviana Espinel-Jara
- Department of Nursing, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| |
Collapse
|
3
|
Khalil M, Piccapane F, Vacca M, Celano G, Mahdi L, Perniola V, Apa CA, Annunziato A, Iacobellis I, Procino G, Calasso M, De Angelis M, Caroppo R, Portincasa P. Nutritional and Physiological Properties of Thymbra spicata: In Vitro Study Using Fecal Fermentation and Intestinal Integrity Models. Nutrients 2024; 16:588. [PMID: 38474717 DOI: 10.3390/nu16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Laura Mahdi
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Valeria Perniola
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Procino
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
4
|
Feriotto G, Tagliati F, Costa V, Monesi M, Tabolacci C, Beninati S, Mischiati C. α-Pinene, a Main Component of Pinus Essential Oils, Enhances the Expression of Insulin-Sensitive Glucose Transporter Type 4 in Murine Skeletal Muscle Cells. Int J Mol Sci 2024; 25:1252. [PMID: 38279251 PMCID: PMC10816943 DOI: 10.3390/ijms25021252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and β-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.
Collapse
Affiliation(s)
- Giordana Feriotto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Federico Tagliati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Valentina Costa
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marcello Monesi
- UOC (Unità Operativa Complessa) Territorial Diabetology, AUSL Ferrara, 44121 Ferrara, Italy;
| | - Claudio Tabolacci
- Research Coordination and Support Service, Superior Institute of Health, 00161 Rome, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Carlo Mischiati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|