1
|
Li A, Lei X, Herdman K, Waidergoren S, Gilboa A, Rosenbaum RS. Impoverished details with preserved gist in remote and recent spatial memory following hippocampal and fornix lesions. Neuropsychologia 2024; 194:108787. [PMID: 38184190 DOI: 10.1016/j.neuropsychologia.2024.108787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Cognitive Map Theory predicts that the hippocampus (HPC) plays a specialized, time-invariant role in supporting allocentric spatial memory, while Standard Consolidation Theory makes the competing prediction that the HPC plays a time-limited role, with more remote memories gaining independence of HPC function. These theories, however, are largely informed by the results of laboratory-based tests that are unlikely to simulate the demands of representing real-world environments in humans. Validation of these theories is further limited by an overall focus on spatial memory of newly encountered environments and on individuals with extensive lesions to the HPC and to surrounding medial temporal lobe (MTL) regions. The current study incorporates naturalistic tests of spatial memory based on recently and remotely encountered environments navigated by individuals with lesions to the HPC/MTL or that are limited to the HPC's major output, the fornix. METHODS Four participants with bilateral HPC/MTL and/or fornix lesions drew sketch maps of recently and remotely experienced neighbourhoods and houses. Tests of the appearance, distances, and routes between landmarks from the same real-world environments were also administered. Performance on the tasks was compared to that of control participants closely matched in terms of exposure to the same neighbourhoods and home environments as well as to actual maps. RESULTS The performance of individuals with fornix/MTL lesions was found to be largely comparable to that of controls on objective tests of spatial memory, other than one case who was impaired on remote and recent conditions for several tasks. The nature of deficits in recent and remote spatial memory were further revealed on house floorplan drawings, which contained spatial distortions, room/structure transpositions, and omissions, and on neighbourhood sketch maps, which were intact in terms of overall layout but sparse in details such as landmarks. CONCLUSION Lab-based tests of spatial memory of newly learned environments are unlikely to fully capture patterns of spared and impaired representations of real-world environments (e.g., peripheral features, configurations). Naturalistic tasks, including generative drawing tasks, indicate that contrary to Cognitive Map Theory, neither HPC nor MTL are critical for allocentric gross representations of large-scale environments. Conversely, the HPC appears critical for representing detailed spatial information of local naturalistic environments and environmental objects regardless of the age of the memory, contrary to Standard Consolidation Theory.
Collapse
Affiliation(s)
| | - Xuehui Lei
- York University, Toronto, Ontario, Canada
| | | | | | - Asaf Gilboa
- Rotman Research Institute, Toronto, Ontario, Canada
| | - R Shayna Rosenbaum
- York University, Toronto, Ontario, Canada; Rotman Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Huang WC, Peng Z, Murdock MH, Liu L, Mathys H, Davila-Velderrain J, Jiang X, Chen M, Ng AP, Kim T, Abdurrob F, Gao F, Bennett DA, Kellis M, Tsai LH. Lateral mammillary body neurons in mouse brain are disproportionately vulnerable in Alzheimer's disease. Sci Transl Med 2023; 15:eabq1019. [PMID: 37075128 PMCID: PMC10511020 DOI: 10.1126/scitranslmed.abq1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
The neural circuits governing the induction and progression of neurodegeneration and memory impairment in Alzheimer's disease (AD) are incompletely understood. The mammillary body (MB), a subcortical node of the medial limbic circuit, is one of the first brain regions to exhibit amyloid deposition in the 5xFAD mouse model of AD. Amyloid burden in the MB correlates with pathological diagnosis of AD in human postmortem brain tissue. Whether and how MB neuronal circuitry contributes to neurodegeneration and memory deficits in AD are unknown. Using 5xFAD mice and postmortem MB samples from individuals with varying degrees of AD pathology, we identified two neuronal cell types in the MB harboring distinct electrophysiological properties and long-range projections: lateral neurons and medial neurons. lateral MB neurons harbored aberrant hyperactivity and exhibited early neurodegeneration in 5xFAD mice compared with lateral MB neurons in wild-type littermates. Inducing hyperactivity in lateral MB neurons in wild-type mice impaired performance on memory tasks, whereas attenuating aberrant hyperactivity in lateral MB neurons ameliorated memory deficits in 5xFAD mice. Our findings suggest that neurodegeneration may be a result of genetically distinct, projection-specific cellular dysfunction and that dysregulated lateral MB neurons may be causally linked to memory deficits in AD.
Collapse
Affiliation(s)
- Wen-Chin Huang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Zhuyu Peng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Mitchell H. Murdock
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Liwang Liu
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Hansruedi Mathys
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
- MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, MA 02139, USA
| | - Xueqiao Jiang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Maggie Chen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Ayesha P. Ng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - TaeHyun Kim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Fatema Abdurrob
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Fan Gao
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL 60612, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
- MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Turnbull OH, Salas CE. The Neuropsychology of Emotion and Emotion Regulation: The Role of Laterality and Hierarchy. Brain Sci 2021; 11:brainsci11081075. [PMID: 34439696 PMCID: PMC8392558 DOI: 10.3390/brainsci11081075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, work in affective neuroscience has increasingly investigated the neural basis of emotion. A central debate in the field, when studying individuals with brain damage, has been whether emotional processes are lateralized or not. This review aims to expand this debate, by considering the need to include a hierarchical dimension to the problem. The historical journey of the diverse literature is presented, particularly focusing on the need to develop a research program that explores the neural basis of a wide range of emotional processes (perception, expression, experience, regulation, decision making, etc.), and also its relation to lateralized cortical and deep-subcortical brain structures. Of especial interest is the study of the interaction between emotional components; for example, between emotion generation and emotion regulation. Finally, emerging evidence from lesion studies is presented regarding the neural basis of emotion-regulation strategies, for which the issue of laterality seems most relevant. It is proposed that, because emotion-regulation strategies are complex higher-order cognitive processes, the question appears to be not the lateralization of the entire emotional process, but the lateralization of the specific cognitive tools we use to manage our feelings, in a range of different ways.
Collapse
Affiliation(s)
- Oliver Hugh Turnbull
- Centre for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor LL57 2DG, Wales, UK
- Correspondence:
| | - Christian Eduardo Salas
- Clinical Neuropsychology Unit, Faculty of Psychology, Diego Portales University, Santiago 8370076, Chile;
- Centre for Human Neuroscience and Neuropsychology (CEHNN), Faculty of Psychology, Diego Portales University, Santiago 8370076, Chile
| |
Collapse
|
4
|
Williams AN, Ridgeway S, Postans M, Graham KS, Lawrence AD, Hodgetts CJ. The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Neuropsychologia 2020; 142:107457. [PMID: 32259556 PMCID: PMC7322517 DOI: 10.1016/j.neuropsychologia.2020.107457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Neuropsychological and functional magnetic resonance imaging evidence suggests that the ability to vividly remember our personal past, and imagine future scenarios, involves two closely connected regions: the hippocampus and ventromedial prefrontal cortex (vmPFC). Despite evidence of a direct anatomical connection from hippocampus to vmPFC, it is unknown whether hippocampal-vmPFC structural connectivity supports both past- and future-oriented episodic thinking. To address this, we applied a novel deterministic tractography protocol to diffusion-weighted magnetic resonance imaging (dMRI) data from a group of healthy young adult humans who undertook an adapted past-future autobiographical interview (portions of this data were published in Hodgetts et al., 2017a). This tractography protocol enabled distinct subdivisions of the fornix, detected previously in axonal tracer studies, to be reconstructed in vivo, namely the pre-commissural (connecting the hippocampus to vmPFC) and post-commissural (linking the hippocampus and medial diencephalon) fornix. As predicted, we found that inter-individual differences in pre-commissural - but not post-commissural - fornix microstructure (fractional anisotropy) were significantly correlated with the episodic richness of both past and future autobiographical narratives. Notably, these results held when controlling for non-episodic narrative content, verbal fluency, and grey matter volumes of the hippocampus and vmPFC. This study provides novel evidence that reconstructing events from one's personal past, and constructing possible future events, involves a distinct, structurally-instantiated hippocampal-vmPFC pathway.
Collapse
Affiliation(s)
- Angharad N Williams
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom; Max Planck Research Group Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Samuel Ridgeway
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|
5
|
Dere E, Dere D, de Souza Silva MA, Huston JP, Zlomuzica A. Fellow travellers: Working memory and mental time travel in rodents. Behav Brain Res 2018; 352:2-7. [DOI: 10.1016/j.bbr.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/24/2022]
|
6
|
Jiang J, Wang GY, Luo W, Xie H, Guan JS. Mammillary body regulates state-dependent fear by alternating cortical oscillations. Sci Rep 2018; 8:13471. [PMID: 30194318 PMCID: PMC6128928 DOI: 10.1038/s41598-018-31622-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
State-dependent memory describes a phenomenon that memory will be efficiently retrieved only when the brain state during retrieval matches the state during encoding. While a variety of psychoactive drugs, such as ethanol, cocaine, morphine and NMDA receptor antagonists, are able to induce state-dependent memory, the biological hallmark of brain state and neural mechanism of its regulation are still unknown. In this study, we found that MK-801 enhanced delta oscillations in awake mice, representing a drug-induced brain state, in which fear memory could only be successfully retrieved when the same drug condition was presented. We identified a key nucleus, mammillary body (MB), which regulates the specific brain state associated with MK-801. Chemogenetic silencing of MB neurons enhanced cortical delta oscillations and generated state-dependent memory. Moreover, optogenetic reconstitution of delta oscillations alone facilitated retrieval of fear memory encoded under MK-801. Our results indicated that delta oscillations in awake animals defined a specific brain state, in which memory formed is inaccessible under the normal condition, shining light on the neural mechanism underlying the fluctuation of memory retrieval and the role of MB in memory encoding and recall.
Collapse
Affiliation(s)
- Jun Jiang
- School of Life Sciences, Tsinghua University, Beijing, 100086, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guang-Yu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100086, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenhan Luo
- School of Life Sciences, Tsinghua University, Beijing, 100086, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Hong Xie
- School of Life Sciences, Tsinghua University, Beijing, 100086, China.,Institute of Brain-intelligence Science and Technology, Zhangjiang Lab, Shanghai, 200031, China
| | - Ji-Song Guan
- School of Life Sciences, Tsinghua University, Beijing, 100086, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
7
|
Lah S, Gott C, Epps A, Parry L. Imagining the Future in Children with Severe Traumatic Brain Injury. J Neurotrauma 2018; 35:2036-2043. [DOI: 10.1089/neu.2017.5250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Suncica Lah
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- ARC Center of Excellence in Cognition and its Disorders, Sydney, New South Wales, Australia
| | - Chloe Gott
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Adrienne Epps
- Brain Injury Rehabilitation Program, Rehab2Kids, Sydney Children's Hospital, Randwick, Randwick, New South Wales, Australia
| | - Louise Parry
- Brain Injury Rehabilitation Program, Rehab2Kids, Sydney Children's Hospital, Randwick, Randwick, New South Wales, Australia
| |
Collapse
|