1
|
Tang Z, Zheng R, Chen P, Li L. Phytochemistry and Biological Profile of the Chinese Endemic Herb Genus Notopterygium. Molecules 2024; 29:3252. [PMID: 39064831 PMCID: PMC11278698 DOI: 10.3390/molecules29143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise overview of the existing information regarding the botanical description, phytochemistry, pharmacology, and molecular mechanisms of the two Notopterygium species: Notopterygium incisum and N. franchetii. More than 500 distinct compounds have been derived from these plants, with the root being the primary source. These components include volatile oils, coumarins, enynes, sesquiterpenes, organic acids and esters, flavonoids, and various other compounds. Research suggests that Notopterygium incisum and N. franchetii exhibit a diverse array of pharmacological effects, encompassing antipyretic, analgesic, anti-inflammatory, antiarrhythmic, anticoagulant, antibacterial, antioxidant, and anticancer properties on various organs such as the brain, heart, digestive system, and respiratory system. Building activity screening models based on the pharmacological effects of Notopterygium species, as well as discovering and studying the pharmacological mechanisms of novel active ingredients, will constitute the primary development focus of Notopterygium medicinal research in the future.
Collapse
Affiliation(s)
| | | | | | - Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.T.); (R.Z.); (P.C.)
| |
Collapse
|
2
|
Liu X, Chen X, Zhang C, Huang M, Yu H, Wang Y, Wang Y. Mitochondrion-NLRP3 inflammasome activation in macrophages: A novel mechanism of the anti-inflammatory effect of Notopterygium in rheumatoid arthritis treatment. Biomed Pharmacother 2023; 167:115560. [PMID: 37769392 DOI: 10.1016/j.biopha.2023.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE The mechanism by which Notopterygium (NE) regulates the nucleotide-binding, oligomerization domain (NOD)-like receptor family and pyrin domain-containing 3 (NLRP3) inflammasome to treat rheumatoid arthritis (RA) was investigated to reveal the scientific implications of NE in RA treatment. METHODS Adjuvant arthritis (AA) rats were replicated. After NE intervention, the anti-inflammatory efficacy of NE in vivo was determined. The mechanism of NE in RA treatment was predicted by network pharmacology, and the key target for further experiments was found through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG). The effect of NE on the NLRP3 inflammasome in AA rats was verified. Furthermore, with the induction of inflammation in RAW264.7 cells by lipopolysaccharide (LPS), several techniques, such as Griess assay, enzyme linked immunosorbent assays, electron microscopy, and fluorescence probe technology, were used to investigate the anti-inflammatory and related mechanisms of NE in RA treatment. RESULTS NE could inhibit inflammation in AA rats. KEGG results showed that NLRP3 participated in the top three pathways of NE in RA treatment. Through Western blotting and immunofluorescence assays, this study demonstrated that NE can regulate NLRP3, pro-Caspase-1, Caspase-1, and CD11b in the ankle joint of AA rats. NE may significantly reduce the LPS-induced inflammatory response of RAW264.7 cells by alleviating mitochondrial damage, reducing the number of mitochondrial deoxyribonucleic Acid and mitochondrial reactive oxygen species, inhibiting NLRP3 inflammasome activation. CONCLUSION The anti-inflammatory and antirheumatic effect of NE may involve regulating NLRP3 inflammasome activation through mitochondria. NLRP3 is probably the key target molecule of NE in the treatment of RA.
Collapse
Affiliation(s)
- Xiangxiang Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaomei Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Cheng Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meixia Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hongmin Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yingzheng Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yinghao Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Chen Y, Liu K, Qin Y, Chen S, Guan G, Huang Y, Chen Y, Mo Z. Effects of Pereskia aculeate Miller Petroleum Ether Extract on Complete Freund’s Adjuvant-Induced Rheumatoid Arthritis in Rats and its Potential Molecular Mechanisms. Front Pharmacol 2022; 13:869810. [PMID: 35614946 PMCID: PMC9124934 DOI: 10.3389/fphar.2022.869810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the therapeutic effect of petroleum ether extract of P. aculeate Miller (PEEP) on rheumatoid arthritis (RA).Methods:In vitro: The Cell Counting Kit-8 (CCK-8) was used to detect cell activity and select the optimal concentration of the extract; the effective site was screened by nitric oxide (NO) colorimetric method and Q-PCR method; the expression of p38, p-p38, p-MK2, and Tristetraprolin (TTP) in RAW 264.7 cells were detected by Western blot. In vivo: The rat model was established by complete Freund’s adjuvant (CFA). The different doses of PEEP on CFA rats were observed with life status, paw swelling, spleen index, X-ray, Hematoxylin eosin (HE) staining; the secretion of Tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and Prostaglandin E2 (PGE2) were detected by Enzyme linked immunosorbent assay (ELISA); the expressions of p38, p-p38, p-MK2, and TTP in the ankle joints of CFA rats were detected by Western blot.Result:In vitro: PEEP, Ethyl Acetate Extract of P. aculeate Miller (EEEP), N-butanol Extract of P. aculeate Miller (BEEP) have no toxic effects on RAW264.7 macrophages. PEEP, EEEP, and BEEP reduce the secretion of NO in RAW264.7 cells induced by lipopolysaccharide (LPS), only PEEP significantly inhibited the mRNA expression levels of inflammatory factors TNF-α and IL-6; PEEP-dependently reduce the secretion of TNF-α and IL-6, decrease the expression of p-p38 and p-MK2, and the level of TTP phosphorylation in LPS-induced RAW264.7 cells. In vivo: PEEP improve the living conditions of CFA rats, reduce foot swelling, spleen index, bone surface erosion and joint space narrowing; reduce the formation of synovial cells, inflammatory cells and pannus in the foot and ankle joints. PEEP reduce the secretion of TNF-α, IL-6, PGE2 in rat serum, downregulate the expression of p-p38 and p-MK2 in the ankle joint, and reduce the phosphorylation of TTP.Conclusion: PEEP improve the living conditions of CFA rats, reduce the degree of foot swelling, protect immune organs, reduce inflammatory cell infiltration, cartilage damage, pannus formation, reduce inflammation and RA damage. The mechanism through regulating the signal pathway of p38 mitogen-activated protein kinase (p38/MAPK), which reduces the release of TNF-α, IL-6, and PGE2 in the serum.
Collapse
Affiliation(s)
- Yifei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Kaifei Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Yingyuan Qin
- Nephrology, Guilin TCM Hospital of China, Guilin, China
| | - Suyi Chen
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Guokai Guan
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Yao Huang
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Yu Chen
- School of Pharmacy, Guilin Medical University, Guilin, China
- *Correspondence: Yu Chen, ; Zhixian Mo,
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yu Chen, ; Zhixian Mo,
| |
Collapse
|
4
|
Cuthbertson P, Geraghty NJ, Adhikary SR, Bird KM, Fuller SJ, Watson D, Sluyter R. Purinergic Signalling in Allogeneic Haematopoietic Stem Cell Transplantation and Graft-versus-Host Disease. Int J Mol Sci 2021; 22:8343. [PMID: 34361109 PMCID: PMC8348324 DOI: 10.3390/ijms22158343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for blood cancers and other haematological disorders. However, allo-HSCT leads to graft-versus-host disease (GVHD), a severe and often lethal immunological response, in the majority of transplant recipients. Current therapies for GVHD are limited and often reduce the effectiveness of allo-HSCT. Therefore, pro- and anti-inflammatory factors contributing to disease need to be explored in order to identify new treatment targets. Purinergic signalling plays important roles in haematopoiesis, inflammation and immunity, and recent evidence suggests that it can also affect haematopoietic stem cell transplantation and GVHD development. This review provides a detailed assessment of the emerging roles of purinergic receptors, most notably P2X7, P2Y2 and A2A receptors, and ectoenzymes, CD39 and CD73, in GVHD.
Collapse
Affiliation(s)
- Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicholas J. Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sam R. Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina M. Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW 2747, Australia;
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (P.C.); (N.J.G.); (S.R.A.); (K.M.B.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Khir NAM, Noh ASM, Shafin N, Ismail CAN. Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review. Purinergic Signal 2021; 17:201-213. [PMID: 33594635 PMCID: PMC8155137 DOI: 10.1007/s11302-021-09764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pain is the most common symptom reported by patients with rheumatoid arthritis (RA) even after the resolution of chronic joint inflammation. It is believed that RA-associated pain is not solely due to inflammation, but could also be attributed to aberrant modifications to the central nervous system. The P2X4 receptor (P2X4R) is an ATP-activated purinergic receptor that plays a significant role in the transmission of information in the nervous system and pain. The involvement of P2X4R during the pathogenesis of chronic inflammatory pain and neuropathic pain is well-established. The attenuation of this receptor alleviates disease pathogenesis and related symptoms, including hyperalgesia and allodynia. Although some studies have revealed the contribution of P2X4R in promoting joint inflammation in RA, how it implicates pain associated with RA at peripheral and central nervous systems is still lacking. In this review, the possible contributions of P2X4R in the nervous system and how it implicates pain transmission and responses were examined.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- International Medical School, Management and Science University, 40100 Shah Alam, Selangor Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Ain’ Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
6
|
Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7531967. [PMID: 32419824 PMCID: PMC7206865 DOI: 10.1155/2020/7531967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by multijoint swelling, pain, and destruction of the synovial joints. Treatments are available but new therapies are still required. One source of new therapies is natural products, including herbs used in traditional medicines. In China and neighbouring countries, natural products have been used throughout recorded history and are still in use for RA and its symptoms. This study used text-mining of a database of classical Chinese medical books to identify candidates for future clinical and experimental investigations of therapeutics for RA. Methods The database Encyclopaedia of Traditional Chinese Medicine (Zhong Hua Yi Dian) includes the full texts of over 1,150 classical books. Eight traditional terms were searched. All citations were assessed for relevance to RA. Results and Conclusions. After removal of duplications, 3,174 citations were considered. After applying the exclusion and inclusion criteria, 548 citations of traditional formulas were included. These derived from 138 books written from 206 CE to 1948. These formulas included 5,018 ingredients (mean, 9 ingredients/formula) comprising 243 different natural products. When these text-mining results were compared to the 18 formulas recommended in a modern Chinese Medicine clinical practice guideline, 44% of the herbal formulas were the same. This suggests considerable continuity in the clinical application of these herbs between classical and modern Chinese medicine practice. Of the 15 herbs most frequently used as ingredients of the classical formulas, all have received research attention, and all have been reported to have anti-inflammatory effects. Two of these 15 herbs have already been developed into new anti-RA therapeutics—sinomenine from Sinomenium acutum (Thunb.) Rehd. & Wils and total glucosides of peony from Paeonia lactiflora Pall. Nevertheless, there remains considerable scope for further research. This text-mining approach was effective in identifying multiple natural product candidates for future research.
Collapse
|