1
|
Gupta M, Hussain MS, Thapa R, Bhat AA, Kumar N. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis. PHARMANUTRITION 2024; 29:100406. [DOI: 10.1016/j.phanu.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
2
|
Dibaei M, Hosseini A, Lavasani H, Kiani-Dehkordi B, Rouini M. Assessment of metabolic interaction between curcumin and tramadol using the isolated perfused rat liver. Heliyon 2024; 10:e35070. [PMID: 39170468 PMCID: PMC11336359 DOI: 10.1016/j.heliyon.2024.e35070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction The presence of phytochemicals in herbal medicines can lead to herb-drug interactions, altering the levels of these compounds and conventional drugs in the bloodstream by influencing CYP450 activity. Considering curcumin's effect on the CYP enzymes responsible for tramadol metabolism, it is essential to assess the potential interaction between curcumin and tramadol when administered together. Materials and methods The pharmacokinetics of tramadol were examined in rats receiving either single or multiple doses of curcumin (80 mg/kg) compared to rats without curcumin treatment. Tramadol liver perfusion was conducted on all rat groups and perfusate samples were collected at specified intervals. Tramadol and its main metabolite were detected using an HPLC system coupled with a fluorescence detector. Results Tramadol concentrations were notably higher in the co-administered group compared to both the control and treatment groups. Conversely, lower concentrations of M1 were observed in the co-administered and treatment groups compared to the control group. The AUC0-60 parameters for tramadol were as follows: 32944.8 ± 1355.5, 22925.7 ± 1650.1, and 36548.0 ± 2808.4 ng⋅min/ml for the control, treatment, and co-administered groups, respectively. Both the co-administered and treatment groups exhibited a lower AUC0-60 of M1 compared to the control group. The lack of significant difference in Cmax and AUC0-60 of M1 between the treatment and co-administered groups suggests that single and multiple doses of curcumin have comparable effects on CYP2D6. Conclusions These results indicate a potential for drug interactions when curcumin and tramadol are taken together. Furthermore, the influence of curcumin on tramadol metabolism varied between single and multiple oral administrations of curcumin. Hence, it is vital to highlight this interaction in clinical settings and conduct additional research to fully understand the clinical implications of combining curcumin and tramadol.
Collapse
Affiliation(s)
- Maryam Dibaei
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hoda Lavasani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Kiani-Dehkordi
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fuentes P, Bernabeu E, Bertera F, Garces M, Oppezzo J, Zubillaga M, Evelson P, Jimena Salgueiro M, Moretton MA, Höcht C, Chiappetta DA. Dual strategy to improve the oral bioavailability of efavirenz employing nanomicelles and curcumin as a bio-enhancer. Int J Pharm 2024; 651:123734. [PMID: 38142017 DOI: 10.1016/j.ijpharm.2023.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
The present investigation was focused on the development of Soluplus®-based nanomicelles (NMs) (10 % w/v) loaded with Efavirenz (EFV) (5 mg/mL) and Curcumin (natural bio-enhancer) (CUR) (5, 10 and 15 mg/mL) to improve the oral bioavalability of EFV. Micellar formulations were obtained employing an acetone-diffusion technique. Apparent aqueous solubility was increased up to ∼1250-fold and 25,000-fold for EFV and CUR, respectively. Drug-loaded nanoformulations showed an excellent colloidal stability with unimodal size distribution and PDI values < 0.30. In vitro drug release was 41.5 % (EFV) and 2.6 % (CUR) from EFV-CUR-NMs over 6 h in simulated gastrointestinal fluids. EFV-CUR-loaded NMs resulted as safe nanoformulations according to the in vitro cytocompatibility assays in Caco-2 cells. Furthermore, CUR bio-enhancer activity was demonstrated for those nanoformulations. A CUR concentration of 15 mg/mL produced a significant (p < 0.05) increment (2.64-fold) of relative EFV oral bioavailability. Finally, the active role of the lymphatic system in the absorption process of EFV, after its oral administration was assessed in a comparative pharmacokinetic study in presence and absence of cycloheximide, a lymphatic transport inhibitor. Overall our EFV-CUR-NMs denoted their potential as a novel nanotechnological platform, representing a step towards an optimized "nano-sized" therapy for AIDS patients.
Collapse
Affiliation(s)
- Pedro Fuentes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina
| | - Ezequiel Bernabeu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Facundo Bertera
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Javier Oppezzo
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - María Jimena Salgueiro
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Buenos Aires, Argentina
| | - Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Christian Höcht
- Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
4
|
Jiang T, Li Y, Yu W, Huang M, Yuan F, Zhong G. Tissue re-distribution of budesonide in rats co-administrated with curcumin by ultra performance liquid chromatography-tandem mass spectrometry. Anal Biochem 2023; 679:115287. [PMID: 37595775 DOI: 10.1016/j.ab.2023.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Budesonide (BUD), a locally acting glucocorticoid with low side effects, is recommended in several Crohn's disease (CD) drug treatment guidelines as the first choice for early treatment. Nevertheless, the extensive first-pass effect mediated by P-glycoprotein (P-gp) and Cytochrome P450 3A4 (CYP3A4) leads to low bioavailability and limits further applications. Curcumin (CUR), a natural polyphenol derived from turmeric, has been found to influence the in vivo processes of drugs by affecting the activity of P-gp and CYP3A4. However, the pharmacokinetic interactions between BUD and CUR remains elusive, so an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of BUD and CUR in the tissue. The results showed that the area under the concentration-time curve 0 to time (AUC0→t) of BUD in the colon and kidney increased by approximately 32.35% and 39.03% respectively in the co-administered group compared to the single-drug group, while the small intestine, liver and plasma decreased by 80.03%, 67.34% and 24.34% respectively compared to the single-drug group. Therefore, long-term treatment with CUR can increase the concentration of BUD in the colonic area without increasing its systemic exposure, thus potentially reducing the incidence of side effects.
Collapse
Affiliation(s)
- Tianyang Jiang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, 510080, China; Guangdong Engineering Technology Research Center of Quality Consistency Evaluation for Generic Drugs, Guangzhou City, Guangdong Province, 510080, China.
| | - Yagang Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, 510080, China; Guangdong Engineering Technology Research Center of Quality Consistency Evaluation for Generic Drugs, Guangzhou City, Guangdong Province, 510080, China.
| | - Weilan Yu
- Department of Pharmacy, Guangzhou Chest Hospital, Guangzhou City, Guangdong Province, 510095, China.
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, 510080, China; Guangdong Engineering Technology Research Center of Quality Consistency Evaluation for Generic Drugs, Guangzhou City, Guangdong Province, 510080, China.
| | - Fang Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou City, Guangdong Province, 510006, China.
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, 510080, China.
| |
Collapse
|
5
|
Abdelrahman IA, Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Jenoobi FI. Cinnamon modulates the pharmacodynamic & pharmacokinetic of amlodipine in hypertensive rats. Saudi Pharm J 2023; 31:101737. [PMID: 37638214 PMCID: PMC10458336 DOI: 10.1016/j.jsps.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
The objective of this study was to investigate the effects of cinnamon on the pharmacodynamic (PD) & pharmacokinetic (PK) of amlodipine in hypertensive rats. The hypertensive control group of Wistar rats received L-NAME (40 mg/kg, daily, orally) only. The cinnamon group of rats was treated with cinnamon (200 mg/kg, daily, orally) along with L-NAME. Following 14 days treatment period, blood pressures of rats were monitored at designated intervals over 24 h utilizing a tail-cuff system for measuring blood pressure. To assess the oral PK; amlodipine was administered as a single oral dose of 1 mg/kg to rats and blood samples were collected at specified intervals over 24 h and analysed by UPLC-LC MS/MS. Synergistic decreased in rat's blood pressure was observed in presence of cinnamon + amlodipine. Simultaneous administration of cinnamon ameliorates the Cmax and AUC0-t of amlodipine, the Cmax and AUC0-t was 11.04 ± 1.01 ng/ml and 113.76 ± 5.62 ng h/ml for the cinnamon + amlodipine group as compared to 4.12 ± 0.49 ng/ml and 48.59 ± 4.28 ng h/ml for the amlodipine alone group. The study demonstrates that the use of cinnamon considerably decreases the blood pressure levels and enhances the PK parameters of amlodipine in hypertensive rats.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
7
|
Meng Q, Cheng Y, Zhou C. Pharmacokinetic interaction between rhynchopylline and pellodendrine via CYP450 enzymes and P-gp. PHARMACEUTICAL BIOLOGY 2021; 59:1551-1555. [PMID: 34757861 PMCID: PMC8583760 DOI: 10.1080/13880209.2021.1999988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/04/2023]
Abstract
CONTEXT Rhynchopylline and pellodendrine are major extractions of commonly used Chinese medicine in gynaecology. The interaction between these two compounds could affect treatment efficiency and even result in toxicity during their co-administration in gynaecological prescription. OBJECTIVE The pharmacokinetic interaction between rhynchopylline and pellodendrine and the potential mechanism were investigated in this study. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into four groups to investigate the pharmacokinetic interaction between rhynchopylline (30 mg/kg) and pellodendrine (20 mg/kg) with single dose of these two drugs as the control. The transport of rhynchopylline was evaluated in the Caco-2 cell model. Additionally, the metabolic stability and the activity of corresponding CYP450 enzymes were assessed in rat liver microsomes. RESULTS The pharmacokinetic profile of rhynchopylline was dramatically affected by pellodendrine with the increased area under the pharmacokinetic curve (3080.14 ± 454.54 vs. 1728.08 ± 220.598 μg/L*h), Cmax (395.1 ± 18.58 vs. 249.1 ± 16.20 μg/L), prolonged t1/2 (9.74 ± 2.94 vs. 4.81 ± 0.42 h) and the reduced clearance rate (from 11.39 ± 1.37 to 5.67 ± 1.42 L/h/kg). No significant changes were observed in the pharmacokinetics of pellodendrine. The transport of rhynchopylline was significantly inhibited by pellodendrine with a decreasing efflux ratio (1.43 vs. 1.79). Pellodendrine significantly inhibited the activity of CYP1A2 and CYP2C9 with IC50 values of 22.99 and 16.23 μM, which are critical enzymes responsible for the metabolism of rhynchopylline. DISCUSSION AND CONCLUSIONS The adverse interaction between rhynchopylline and pellodendrine draws attention to the co-administration of these two herbs and provides a reference for further investigations with a broader study population.
Collapse
Affiliation(s)
- Qingzhen Meng
- Department of Intravenous Drug Allocation, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yongheng Cheng
- Outpatient Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Cui Zhou
- Department of Intravenous Drug Allocation, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
8
|
Sun Y, He M, Sun Y, Wei J. 4-O-galloylalbiflorin inhibits the activity of CYP3A, 2C9, and 2D in human liver microsomes. Xenobiotica 2021; 51:871-876. [PMID: 34082641 DOI: 10.1080/00498254.2021.1936688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of 4-O-galloylalbiflorin on the activity of cytochrome P450 enzymes (CYP450s) is an important factor that may induce drug-drug interaction.The effect of 4-O-galloylalbiflorin on the activity of CYP450s was evaluated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM 4-O-galloylalbiflorin in pooled human liver microsomes. The inhibition model and corresponding parameters were assessed b fitting with Lineweaver-Burk plots. The time-dependent study was performed with the incubation time of 0, 5, 10, 15, and 30 min.4-O-galloylalbiflorin significantly inhibited the activity of CYP3A, 2C9, and 2 D in a concentration-dependent manner with the IC50 values of 8.2, 13, and 11 μM, respectively. The inhibition of CYP3A was found to be non-competitive and time-dependent with the Ki value of 4.0 μM and the KI/Kinact value of 2.2/0.030 (μM·min). The inhibition of CYP2C9 and 2 D was not affected by the incubation time but was found to be competitive with the Ki values of 6.7 and 6.6 μM, respectively.The inhibitory effect of 4-O-galloylalbiflorin on the activity of CYP3A, 2C9, and 2 D implying the potential drug-drug interaction between 4-O-galloylalbiflorin and the drugs metabolized by these CYP450s.
Collapse
Affiliation(s)
- Yu Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Mengya He
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Yanling Sun
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| | - Jianhong Wei
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|