1
|
Asakawa N, Oharaseki T, Yokouchi Y, Miura N, Ohno N, Takahashi K. A pathological study on the efficacy of Syk inhibitors in a Candida albicans-induced aortic root vasculitis murine model. Cardiovasc Pathol 2024; 72:107669. [PMID: 38866089 DOI: 10.1016/j.carpath.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The activation of innate immunity may be involved in the development of Candida albicans-induced murine vasculitis, which resembles Kawasaki disease (KD) vasculitis. This study aimed to histologically clarify the time course of the development of vasculitis in this model in detail and to estimate the potential role of spleen tyrosine kinase (Syk) inhibitors in KD vasculitis. METHODS AND RESULTS DBA/2 male mice were intraperitoneally injected with a vasculitis-inducing substance and treated with a Syk inhibitor (R788 or GS-9973). Systemic vasculitis, especially in the aortic annulus area, was histologically evaluated. Regarding lesions in the aortic annulus area, some mice in the untreated control group already showed initiation of vasculitis 1 day after the final injection of a vasculitis-inducing substance. The vasculitis expanded over time. Inflammation occurred more frequently at the aortic root than at the coronary artery. The distribution of inflammatory cells was limited to the intima, intima plus adventitia, or all layers. In the Syk inhibitor-treated groups, only one mouse had vasculitis at all observation periods. The severity and area of the vasculitis were reduced by both Syk inhibitors. CONCLUSION Candida albicans-induced murine vasculitis may occur within 1 day after the injection of a vasculitis-inducing substance. Additionally, Syk inhibitors suppress murine vasculitis.
Collapse
Affiliation(s)
- Nanae Asakawa
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan.
| | - Toshiaki Oharaseki
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| | - Yuki Yokouchi
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| | - Noriko Miura
- Center for the Advance of Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Naohito Ohno
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Kei Takahashi
- Department of Surgical Pathology (Ohashi), Toho University Graduate School of Medicine, 2-22-36, Ohashi, Meguro, Tokyo 153-8515, Japan
| |
Collapse
|
2
|
Wang W, Zhu L, Li X, Liu Z, Lv H, Qian G. Emerging evidence of microbial infection in causing systematic immune vasculitis in Kawasaki disease. Front Microbiol 2023; 14:1313838. [PMID: 38188572 PMCID: PMC10771848 DOI: 10.3389/fmicb.2023.1313838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Kawasaki disease (KD) is a systematic vasculitis that is often complicated by coronary artery lesions and is a leading cause of acquired heart disease in developed countries. Previous studies have suggested that genetic susceptibility, together with an inducing infectious agent, could be involved in KD pathogenesis; however, the precise causative agent of this disease remains unknown. Moreover, there are still debates concerning whether KD is an infectious disease or an autoimmune disease, although many studies have begun to show that various pathogens functioning as critical inducers could activate different kinds of immune cells, consequently leading to the dysfunction of endothelial cells and systematic vasculitis. Here in this review, we attempt to summarize all the available evidence concerning pathogen infections associated with KD pathogenesis. We also discuss the related mechanisms, present a future perspective, and identify the open questions that remain to be investigated, thereby providing a comprehensive description of pathogen infections and their correlations with the host immune system in leading to KD.
Collapse
Affiliation(s)
- Wang Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiheng Liu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Animal models of vasculitis. Curr Opin Rheumatol 2022; 34:10-17. [PMID: 34783711 DOI: 10.1097/bor.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Vasculitis describes a wide spectrum of rare, inflammatory, multisystem disorders. These heterogenous diseases all have inflammation of blood vessels as a central feature. However, they differ in terms of their genetic and environmental risk factors, disease pathogenesis, clinical presentations and treatment strategies. Many animal models of vasculitis exist, each resembling a different human clinical phenotype. This review provides an overview of recently published findings from experimental animal models of vasculitis. RECENT FINDINGS Several new animal models have been described during the review period. New insights gleaned from existing animal models regarding cause, disease effector mechanisms and novel treatments identified in established animal models are discussed. SUMMARY Animal models continue to be an important tool for understanding disease pathogenesis, especially in rare and complex diseases such as vasculitis. They also provide an invaluable platform for development and preclinical testing of new treatments.
Collapse
|
4
|
Yoshida Y, Banno-Terada R, Takada M, Fujii T, Takagaki N, Maekawa A, Tanaka A, Endo M, Yamada A, Mamiya R, Nagi-Miura N, Ohno N, Tsuji T, Kohno T. Sivelestat's effect on Candida albicans water-soluble fraction-induced vasculitis. Pediatr Int 2022; 64:e15153. [PMID: 35522644 DOI: 10.1111/ped.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the efficacy of sivelestat sodium hydrate (SSH) as a treatment for Kawasaki disease, and its pharmacological action sites, in mice with Candida albicans water-soluble fraction-induced vasculitis. METHODS Sivelestat sodium hydrate was administered intraperitoneally to Candida albicans water-soluble fraction-induced vasculitis model mice to assess its efficacy in preventing the development of coronary artery lesions based on the degree of inflammatory cell infiltration in the aortic root and coronary arteries (vasculitis score). The pharmacological sites of action were investigated based on changes in neutrophil elastase (NE) and intercellular adhesion molecule 1 (ICAM-1) positive areas, ICAM-1 and tumor necrosis factor-α mRNA expression levels in the upper heart, and the proportion of monocytes in the peripheral blood. RESULTS The vasculitis score decreased below the lower limit of the 95% confidence interval of untreated mice in 69% of the SSH-treated mice. The NE- and ICAM-1-positive regions, and the mRNA expression of ICAM-1 and tumor necrosis factor-α were lower in the SSH-treated mice than in the untreated mice. The proportion of monocytes in the peripheral blood was higher in the SSH-treated mice than in the untreated mice, whereas monocyte migration to inflammation areas was suppressed in the SSH-treated mice. CONCLUSIONS Our results showed that SSH might prevent the development of coronary artery lesions and ameliorate disease activity. In addition to its NE-inhibitory effect, SSH sites of action may also include monocytes.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Rie Banno-Terada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.,Department of Pharmacy, Aizenbashi Hospital, Osaka City, Osaka, Japan
| | - Masashi Takada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Toui Fujii
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Naofumi Takagaki
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Aoi Maekawa
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Arisa Tanaka
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Miki Endo
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Ayaka Yamada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Ryota Mamiya
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.,Research Institute for Production Development, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
5
|
The Role of IL-17-Producing Cells in Cutaneous Fungal Infections. Int J Mol Sci 2021; 22:ijms22115794. [PMID: 34071562 PMCID: PMC8198319 DOI: 10.3390/ijms22115794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.
Collapse
|
6
|
Tanaka H, Yanai C, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by Cell Wall Mannoprotein Fractions of Clinically Isolated Candida Species. Med Mycol J 2020; 61:33-48. [PMID: 32863327 DOI: 10.3314/mmj.20-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
8
|
Abstract
Kawasaki disease is an acute febrile illness and systemic vasculitis of unknown aetiology that predominantly afflicts young children, causes coronary artery aneurysms and can result in long-term cardiovascular sequelae. Kawasaki disease is the leading cause of acquired heart disease among children in the USA. Coronary artery aneurysms develop in some untreated children with Kawasaki disease, leading to ischaemic heart disease and myocardial infarction. Although intravenous immunoglobulin (IVIG) treatment reduces the risk of development of coronary artery aneurysms, some children have IVIG-resistant Kawasaki disease and are at increased risk of developing coronary artery damage. In addition, the lack of specific diagnostic tests and biomarkers for Kawasaki disease make early diagnosis and treatment challenging. The use of experimental mouse models of Kawasaki disease vasculitis has considerably improved our understanding of the pathology of the disease and helped characterize the cellular and molecular immune mechanisms contributing to cardiovascular complications, in turn leading to the development of innovative therapeutic approaches. Here, we outline the pathophysiology of Kawasaki disease and summarize and discuss the progress gained from experimental mouse models and their potential therapeutic translation to human disease. This Review outlines the pathophysiology of Kawasaki disease and discusses the progress gained from experimental mouse models and their potential therapeutic translation to human disease. Kawasaki disease is a childhood systemic vasculitis leading to the development of coronary artery aneurysms; it is the leading cause of acquired heart disease in children in developed countries. The cause of Kawasaki disease is unknown, although it is suspected to be triggered by an unidentified infectious pathogen in genetically predisposed children. Kawasaki disease might not be a normal immune response to an unusual environmental stimulus, but rather a genetically determined unusual and uncontrolled immune response to a common stimulus. Although the aetiological agent in humans is unknown, mouse models of Kawasaki disease vasculitis demonstrate similar pathological features and have substantially accelerated discoveries in the field. Genetic and transcriptomic analysis of blood samples from patients with Kawasaki disease and experimental evidence generated using mouse models have demonstrated the critical role of IL-1β in the pathogenesis of this disease and the therapeutic potential of targeting this pathway (currently under investigation in clinical trials).
Collapse
|
9
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
10
|
Suganuma E, Sato S, Honda S, Nakazawa A. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract. Exp Anim 2020; 69:233-241. [PMID: 31932543 PMCID: PMC7220718 DOI: 10.1538/expanim.19-0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kawasaki disease (KD), a febrile systemic vasculitis in infants associated with coronary
aneurysm, is a major cause of cardiac sequelae such as myocardial infarction (MI) and
sudden death. These events are caused by coronary stenosis due to intimal proliferation or
thrombotic formation; however, histological evaluation is limited to autopsy cases of
human KD. We therefore investigated the histological features of coronary artery (CA)
stenosis in mice induced by Lactobacillus casei cell wall extract (LCWE).
LCWE-induced coronary inflammation gradually progressed in a time-dependent manner and
expanded to all layers of the vessel wall over 28 days. In addition, frequent elastin
degradation was observed and abundant α-smooth muscle actin (SMA)-positive vascular smooth
muscle cells (VSMCs) infiltrated into the intima. Furthermore, most VSMCs were positive
for proliferating cell nuclear antigen (PCNA) following staining, suggesting that VSMCs
likely exhibited a proliferative phenotype. In conclusion, we show a novel mouse model of
coronary stenosis induced by LCWE that is characterized by coronary stenosis with severe
coronary vasculitis and elastin degradation. In addition, VSMC proliferation plays an
important role in the formation of coronary stenosis. This model is an appropriate model
of KD coronary stenosis.
Collapse
Affiliation(s)
- Eisuke Suganuma
- Division of Infectious Diseases and Immunology and Allergy, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama 330-8777, Japan
| | - Satoshi Sato
- Division of Infectious Diseases and Immunology and Allergy, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama 330-8777, Japan
| | - Satoko Honda
- Division of Clinical Research, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama, Japan
| | - Atsuko Nakazawa
- Division of Clinical Research, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama, Japan
| |
Collapse
|
11
|
Kuo KC, Yang YL, Lo MH, Cai XY, Kuo HC, Huang YH. The Expression of Glycoprotein Genes in the Inflammatory Process of Kawasaki Disease. Front Pediatr 2020; 8:592122. [PMID: 33344384 PMCID: PMC7744457 DOI: 10.3389/fped.2020.592122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Kawasaki disease (KD) is the most common form of febrile coronary vasculitis disease to occur in children. Early diagnosis and proper therapy can prevent the complication of coronary artery lesions (CAL). The main pathogenesis of KD is an inflammatory process related to the host's genetic characteristics. In innate human immunity, the interaction of leukocytes and glycoprotein plays an important role against microbes. The purpose of our study was to understand the role of leukocytes' glycoprotein genes during the acute phase of KD. Materials and Methods: We enrolled a total of 97 subjects from a medical center. Of those, 24 subjects were healthy controls, and 24 subjects were fever controls; the other 49 subjects were KD patients who had had blood samples taken both before and after IVIG treatment. We collected the total RNA from leukocytes and performed a quantitative polymerase chain reaction for the HP, GRP84, and CLEC4D genes in real time. Results: Compared with both the healthy and fever controls, the upregulation of HP, GRP84, and CLEC4D genes was significant in peripheral leukocytes during acute-phase KD. The transcriptional level of these respective genes not only demonstrated a positive correlation with each other, but were also effective predictors for KD (all auROC >0.87) according to the ROC curve analysis. The hyper-expression of these three genes was significantly associated with IVIG resistance, but not CAL formation. Conclusions: Our study demonstrates that the expression of HP, GRP84, and CLEC4D genes of leukocytes play an important role in the pathogenesis and primary IVIG response during the acute inflammatory process of KD.
Collapse
Affiliation(s)
- Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Xin-Yuan Cai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Nakamura A, Ikeda K, Hamaoka K. Aetiological Significance of Infectious Stimuli in Kawasaki Disease. Front Pediatr 2019; 7:244. [PMID: 31316950 PMCID: PMC6611380 DOI: 10.3389/fped.2019.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Kawasaki disease (KD) is a pediatric vasculitis syndrome that is often involves coronary artery lesions (e. g., coronary artery aneurysms). Although its causal factors and entire pathogenesis remain elusive, the available evidence indicates that the pathogenesis of KD is closely associated with dysregulation of immune responses to various viruses or microbes. In this short review, we address several essential aspects of the etiology of KD with respect to the immune response to infectious stimuli: 1) the role of viral infections, 2) the role of bacterial infections and the superantigen hypothesis, 3) involvement of innate immune response including pathogens/microbe-associated molecular patterns and complement pathways, and 4) the influence of genetic background on the response to infectious stimuli. Based on the clinical and experimental evidence, we discuss the possibility that a wide range of microbes and viruses could cause KD through common and distinct immune processes.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Central Research Laboratory, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Ikeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Hamaoka
- Pediatric Cardiology and Kawasaki Disease Center, Uji-Tokushukai Medical Center, Kyoto, Japan.,Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|