Barrett JM, Healey LA, Fischer SL, Callaghan JP. Cervical Spine Motion Requirements From Night Vision Goggles May Play a Greater Role in Chronic Neck Pain than Helmet Mass Properties.
HUMAN FACTORS 2024;
66:363-376. [PMID:
35473435 PMCID:
PMC10757397 DOI:
10.1177/00187208221090689]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND
Chronic Neck Pain (CNP) among rotary-wing aircrew is thought to stem from night vision goggles (NVG) and counterweight (CW) systems which displace the centre of mass of the head. This investigation aimed to quantify the loads acting on the neck as a function of movement magnitude (MM), helmet conditions, and movement axes in rapid movements.
METHODS
Cervical spine kinematics during rapid head repositioning tasks for flexion-extension (FE) and axial rotation (AR) movements were measured from 15 males and 15 females. Participants moved in either a 35° (Near MM) or 70° arc (Far MM), while donning a helmet, helmet with NVG, helmet with NVG and a typical CW, and a CW Liner (CWL). Measured EMG from three muscles bilaterally and used to drive a biomechanical model to quantify the compression and shear acting at the C5-C6 joint.
RESULTS
In AR, the NVGs were associated with the largest compression magnitudes, 252 (24) N. CW conditions decreased the maximum compression to 249 (53) N. For FE, the compression was 340 N for the Far MM trials and 246 N for Near MMs. Changing the helmet configuration only modestly influenced these magnitudes in FE.
CONCLUSION
Every 30° of MM increased compression by 57 to 105 N. The reduction of the moment of inertia by 16% in the CWL did not reduce reaction forces. Joint loads scaled proportionately with head-supported weight by a factor of 2.05. The magnitudes of loads suggest a cumulative loading pathway for CNP development.
Collapse