1
|
Ning Q, Liu J, Liu S, Zou Q, Li K, Li Z. TRx0237 induces apoptosis and enhances anti-PD-1 immunotherapeutic efficacy in anaplastic thyroid Cancer. Int Immunopharmacol 2025; 155:114610. [PMID: 40203792 DOI: 10.1016/j.intimp.2025.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Anaplastic thyroid cancer (ATC) is a highly malignant and lethal tumor with poor prognosis, but there is a lack of effective treatment strategies. In our study, we screened a drug library and identified that TRx0237, a tau protein inhibitor, showed inhibitory effect on ATC cells. Further research demonstrated that the inhibitory effect of TRx0237 was mainly through the induction of apoptosis via reactive oxygen species (ROS)-mediated endoplasmic reticulum stress pathway. Meanwhile, the pro-apoptosis effect and mechanism of TRx0237 on ATC were verified in xenograft and ATC patient-derived organoids. In addition, TRx0237 significantly upregulated the expression of PD-L1 in ATC, and synergistically enhanced the effect of anti-PD-1 therapy in xenograft and organoids model. Therefore, our study suggests that TRx0237 showed anticancer effects by inducing apoptosis and improving the efficacy of anti-PD-1 immunotherapy. TRx0237 is a potential agent for the treatment of ATC.
Collapse
Affiliation(s)
- Qingyang Ning
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Breast Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shijing Liu
- Department of Ethnomedicine, Liuzhou Traditional Chinese Medicine Hospital, Guangxi University of Chinese Medicine, China
| | - Quanqing Zou
- Department of Breast Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Kewei Li
- Department of Pediatric Department, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery; Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, China; Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
2
|
Lotfy VF, Basta AH. Enhancing the valorization of pulping black liquors in production effective aerogel-carbon nanostructure as adsorbents toward cationic and ionic dyes. Sci Rep 2024; 14:15236. [PMID: 38956097 PMCID: PMC11219910 DOI: 10.1038/s41598-024-65136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
This work deals with promoting the efficiency of removing the cationic and ionic dyes by new aerogel-carbon nanostructures. For cleaner production the rice straw-pulping black liquors, which regards serious environmental risk during routine disposing, is used in preparing the aerogel precursors. These aerogels (AGBs) depend on using pulping black liquor in hybrid with resorcinol and the less carcinogenic formaldehyde butyraldehyde. Black liquors from five pulping processes are used, Elemental, thermogravimetric (TGA and DTG), and FTIR-ATR analyses are used to characterize the carbon precursors. While their adsorption behavior toward cationic and anionic dyes are accessed via iodine-value, adsorption capacity and kinetic models, textural characterization, and SEM. The TGA measurements reveal that AGBs from BLs of neutral sulfite and soda-borohydride pulping reagents have higher activation and degradation energies than other aerogels. In terms of cationic and anionic dyes adsorption as well as textural characterization, the AGB-CNSs surpass that made from BLs. The discarded KOH/NH4OH black liquor is used to synthesize the best aerogel precursor for producing cationic methylene blue dye (MB) adsorbent, where it provides an adsorption capacity 242.1 mg/g. The maximum anionic brilliant blue dye (BB) adsorption capacity, 162.6 mg/g, is noticed by Kraft BL-aerogel-CNSs. These finding data overcome the literature carbon adsorbents based on lignin precursors. All examined CNSs toward MB dye follow the Langmuir adsorption equilibrium; while primarily the Freundlich model for BB dye. The pseudo-second-order kinetic model well fits the adsorption kinetics of investigated AGB-CNSs. The textural characterization and SEM revealed a mixture of mesoporous and micro porous features in the CNSs.
Collapse
Affiliation(s)
- Vivian F Lotfy
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Altaf H Basta
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
Hashmi MU, Ahmed R, Mahmoud S, Ahmed K, Bushra NM, Ahmed A, Elwadie B, Madni A, Saad AB, Abdelrahman N. Exploring Methylene Blue and Its Derivatives in Alzheimer's Treatment: A Comprehensive Review of Randomized Control Trials. Cureus 2023; 15:e46732. [PMID: 38022191 PMCID: PMC10631450 DOI: 10.7759/cureus.46732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Methylene blue (MB) and its compounds are investigated for their potential benefits in the management of Alzheimer's disease (AD). AD is a widely seen neuropathological disorder characterized by the gradual decline of cognitive abilities, ultimately leading to the development of severe dementia. It is anticipated that there will be a significant increase in the prevalence of AD due to the aging population. Histopathologically, AD is distinguished by the presence of intracellular tangles of neurofibrillary tissues (NFTs) and extracellular amyloid plaques within the brain. MB is a thiophenazine dye with FDA approval for treating several illnesses. Its ease in crossing the blood-brain barrier and potential therapeutic use in central nervous system diseases have increased interest in its application for treating AD. The literature review includes randomized clinical trials investigating MB's potential benefits in treating AD. The findings of the studies indicate that the administration of MB has demonstrated enhancements in cognitive function, reductions in the accumulation of plaques containing beta-amyloid, improvements in memory and cognitive function in animal subjects, and possesses antioxidant properties that can mitigate oxidative stress and inflammation within the brain. This review evaluates the modern and latest research on the application of MB for treating AD.
Collapse
Affiliation(s)
| | - Ragda Ahmed
- Internal Medicine, White River Health, Batesville, USA
| | - Sulafa Mahmoud
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Kholood Ahmed
- Internal Medicine, College of Human Medicine, Michigan State University, East Lansing, USA
| | - Noura M Bushra
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Areeg Ahmed
- Nephrology, Harlem Hospital Center, Columbia University, New York, USA
| | - Batran Elwadie
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Amna Madni
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Amel B Saad
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Nadir Abdelrahman
- Family Medicine, College of Human Medicine, Michigan State University, East Lansing, USA
| |
Collapse
|
4
|
Peng Y, Jin H, Xue YH, Chen Q, Yao SY, Du MQ, Liu S. Current and future therapeutic strategies for Alzheimer's disease: an overview of drug development bottlenecks. Front Aging Neurosci 2023; 15:1206572. [PMID: 37600514 PMCID: PMC10438465 DOI: 10.3389/fnagi.2023.1206572] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common chronic neurodegenerative disease worldwide. It causes cognitive dysfunction, such as aphasia and agnosia, and mental symptoms, such as behavioral abnormalities; all of which place a significant psychological and economic burden on the patients' families. No specific drugs are currently available for the treatment of AD, and the current drugs for AD only delay disease onset and progression. The pathophysiological basis of AD involves abnormal deposition of beta-amyloid protein (Aβ), abnormal tau protein phosphorylation, decreased activity of acetylcholine content, glutamate toxicity, autophagy, inflammatory reactions, mitochondria-targeting, and multi-targets. The US Food and Drug Administration (FDA) has approved five drugs for clinical use: tacrine, donepezil, carbalatine, galantamine, memantine, and lecanemab. We have focused on the newer drugs that have undergone clinical trials, most of which have not been successful as a result of excessive clinical side effects or poor efficacy. Although aducanumab received rapid approval from the FDA on 7 June 2021, its long-term safety and tolerability require further monitoring and confirmation. In this literature review, we aimed to explore the possible pathophysiological mechanisms underlying the occurrence and development of AD. We focused on anti-Aβ and anti-tau drugs, mitochondria-targeting and multi-targets, commercially available drugs, bottlenecks encountered in drug development, and the possible targets and therapeutic strategies for future drug development. We hope to present new concepts and methods for future drug therapies for AD.
Collapse
Affiliation(s)
- Yong Peng
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-hui Xue
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
5
|
Gureev AP, Sadovnikova IS, Popov VN. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:940-956. [PMID: 36180986 DOI: 10.1134/s0006297922090073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.
Collapse
Affiliation(s)
- Artem P Gureev
- Voronezh State University, Voronezh, 394018, Russia.
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | | | - Vasily N Popov
- Voronezh State University, Voronezh, 394018, Russia
- Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| |
Collapse
|
6
|
Khoury R, Gallop A, Roberts K, Grysman N, Lu J, Grossberg GT. Pharmacotherapy for Alzheimer’s disease: what’s new on the horizon? Expert Opin Pharmacother 2022; 23:1305-1323. [DOI: 10.1080/14656566.2022.2097868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, St. Georges Hospital University Medical Center, Beirut, Lebanon
- University of Balamand, Faculty of Medicine, Beirut, Lebanon
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Amy Gallop
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Kelsey Roberts
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Jiaxi Lu
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - George T. Grossberg
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Sadovnikova IS, Gureev AP, Ignatyeva DA, Gryaznova MV, Chernyshova EV, Krutskikh EP, Novikova AG, Popov VN. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharmaceuticals (Basel) 2021; 14:607. [PMID: 34201885 PMCID: PMC8308546 DOI: 10.3390/ph14070607] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aging is one of the most serious factors for central nervous dysfunctions, which lead to cognitive impairment. New highly effective drugs are required to slow the development of cognitive dysfunction. This research studied the effect of dimethyl fumarate (DMF), methylene blue (MB), and resveratrol (RSV) on the cognitive functions of 15-month-old mice and their relationship to the maintenance of mitochondrial quality control in the brain and the bacterial composition of the gut microbiome. We have shown that studied compounds enhance mitochondrial biogenesis, mitophagy, and antioxidant defense in the hippocampus of 15-month-old mice via Nrf2/ARE pathway activation, which reduces the degree of oxidative damage to mtDNA. It is manifested in the improvement of short-term and long-term memory. We have also shown that memory improvement correlates with levels of Roseburia, Oscillibacter, ChristensenellaceaeR-7, Negativibacillus, and Faecalibaculum genera of bacteria. At the same time, long-term treatment by MB induced a decrease in gut microbiome diversity, but the other markers of dysbiosis were not observed. Thus, Nrf2/ARE activators have an impact on mitochondrial quality control and are associated with a positive change in the composition of the gut microbiome, which together lead to an improvement in memory in aged mice.
Collapse
Affiliation(s)
- Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Daria A. Ignatyeva
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Maria V. Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Anastasia G. Novikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
8
|
Khoury R, Liu Y, Sheheryar Q, Grossberg GT. Pharmacotherapy for Frontotemporal Dementia. CNS Drugs 2021; 35:425-438. [PMID: 33840052 DOI: 10.1007/s40263-021-00813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia is a heterogeneous spectrum of neurodegenerative disorders. The neuropathological inclusions are tau proteins, TAR DNA binding protein 43 kDa-TDP-43, or fused in sarcoma-ubiquitinated inclusions. Genetically, several autosomal mutations account for the heritability of the disorder. Phenotypically, frontotemporal dementia can present with a behavioral variant or a language variant called primary progressive aphasia. To date, there are no approved symptomatic or disease-modifying treatments for frontotemporal dementia. Currently used therapies are supported by low-level of evidence (mostly uncontrolled) studies. The off-label use of drugs is also limited by their side-effect profile including an increased risk of confusion, parkinsonian symptoms, and risk of mortality. Emerging disease-modifying treatments currently target the progranulin and the expansion on chromosome 9 open reading frame 72 genes as well as tau deposits. Advancing our understanding of the pathophysiology of the disease and improving the design of future clinical trials are much needed to optimize the chances to obtain positive outcomes.
Collapse
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, Saint Georges Hospital University Medical Center, Youssef Sursock Street, PO Box 166378, Beirut, Lebanon. .,Faculty of Medicine, University of Balamand, Beirut, Lebanon. .,Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| | - Yu Liu
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Quratulanne Sheheryar
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
9
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
11
|
Equilibrium Study, Modeling and Optimization of Model Drug Adsorption Process by Sunflower Seed Shells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The adsorption capacity of the medication methylthioninium chloride (MC) from aqueous solution onto sunflower seed shells (SSS), a low cost and abundant alternative adsorbent, was investigated in a batch system. The surface properties of the adsorbent were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), specific surface area (by using the Brunauer–Emmett–Teller equation), the liquid displacement method and pHPZC. The ability of SSS to remove the medication was assessed through kinetic, thermodynamic and equilibrium investigations. The adsorption efficiency of the SSS adsorbent for the removal of MC was evaluated considering the effects of its concentration, temperature, adsorption contact time, and the pH of the medium. The results obtained from the kinetic and isotherm studies show that the adsorption of the MC on SSS follows pseudo-second-order kinetics (R² > 0.99) and the Temkin isotherm model (R² = 0.97), respectively. The thermodynamic study showed that the adsorption was endothermic and spontaneous, according to its physisorption mechanism. The mathematical modeling of this process was carried out by using the surface response methodology of Box–Behenken. It was possible to deduce a statistically reliable regression equation that related the adsorption yield to the chosen operating parameters, that is, the initial MC concentration, the adsorbent dosage and the pH. Analysis of the variance indicated that the most influential parameters were the SSS dosage, the pH and their interaction and showed the optimal values for ensuring the best adsorption capacity of 95.58%.
Collapse
|