1
|
Johnson LM, Pulskamp TG, Berlau DJ. The latest developments in synthetic approaches to Duchenne muscular dystrophy. Expert Rev Neurother 2025:1-11. [PMID: 39899275 DOI: 10.1080/14737175.2025.2462281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare X-linked genetic disorder caused by mutations in the dystrophin gene, leading to an almost complete absence of dystrophin, which is essential for muscle cell structure and function. This resulting muscle deterioration and fibrosis, eventually causes respiratory failure and cardiomyopathy. While there is currently no cure, existing therapies aim to prolong survival and alleviate symptoms. AREAS COVERED This paper reviews current and emerging therapies for DMD, focusing on their safety and efficacy. Although corticosteroids remain the standard treatment, newly approved drugs such as exon-skipping therapies, vamorolone, delandistrogene moxeparvovec, and givinostat provide new treatment options. Additionally, future therapies, including gene therapy, stem cell treatments, and anti-fibrotic agents, show promise for clinical application. EXPERT OPINION Advancements in DMD treatments have expanded patient options. While gene therapy offers potential for correcting the genetic defect and alleviating symptoms, corticosteroids remain the most cost-effective and well-researched treatment. This is partly due to the lack of compelling long-term safety and efficacy data for gene therapies. The accelerated FDA review process has enabled faster approval of new medications; however many have provided minimal clinical benefit to patients. Despite these challenges, continued drug development and innovative research offer hope to patients.
Collapse
Affiliation(s)
- Lucy M Johnson
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Tariq G Pulskamp
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| |
Collapse
|
2
|
Luna-Angulo A, Landa-Solís C, Escobar-Cedillo RE, Estrada-Mena FJ, Sánchez-Chapul L, Gómez-Díaz B, Carrillo-Mora P, Avilés-Arnaut H, Jiménez-Hernández L, Jiménez-Hernández DA, Miranda-Duarte A. Pharmacological Treatments and Therapeutic Targets in Muscle Dystrophies Generated by Alterations in Dystrophin-Associated Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1060. [PMID: 39064489 PMCID: PMC11279157 DOI: 10.3390/medicina60071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
Collapse
Affiliation(s)
- Alexandra Luna-Angulo
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, División de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Rosa Elena Escobar-Cedillo
- Departamento de Electromiografía y Distrofia Muscular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Francisco Javier Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Facultad de Ciencias de la Salud, Augusto Rodin 498, Ciudad de México 03920, Mexico
| | - Laura Sánchez-Chapul
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Benjamín Gómez-Díaz
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Paul Carrillo-Mora
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo Leon, Av. Universidad s/n Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico
| | | | | | - Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| |
Collapse
|
3
|
Nguyen CT, Chávez-Madero C, Jacques E, Musgrave B, Yin T, Saraci K, Gilbert PM, Stewart BA. Electron microscopic analysis of the influence of iPSC-derived motor neurons on bioengineered human skeletal muscle tissues. Cell Tissue Res 2024; 396:57-69. [PMID: 38326636 PMCID: PMC10997689 DOI: 10.1007/s00441-024-03864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
3D bioengineered skeletal muscle macrotissues are increasingly important for studies of cell biology and development of therapeutics. Tissues derived from immortalized cells obtained from patient samples, or from pluripotent stem cells, can be co-cultured with motor-neurons to create models of human neuromuscular junctions in culture. In this study, we present foundational work on 3D cultured muscle ultrastructure, with and without motor neurons, which is enabled by the development of a new co-culture platform. Our results show that tissues from Duchenne muscular dystrophy patients are poorly organized compared to tissues grown from healthy donor and that the presence of motor neurons invariably improves sarcomere organization. Electron micrographs show that in the presence of motor neurons, filament directionality, banding patterns, z-disc continuity, and the appearance of presumptive SSR and T-tubule profiles all improve in healthy, DMD-, and iPSC-derived muscle tissue. Further work to identify the underlying defects of DMD tissue disorganization and the mechanisms by which motor neurons support muscle are likely to yield potential new therapeutic approaches for treating patients suffering from Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Christine T Nguyen
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Carolina Chávez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Erik Jacques
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Brennen Musgrave
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ting Yin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Kejzi Saraci
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Penney M Gilbert
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Bryan A Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|