1
|
Hofmann SG, Kasch C, Pereira B, Barbosa C, Andreoli G. The risks versus the benefits of pharmacological intervention in social anxiety disorder in children. Expert Rev Neurother 2025:1-12. [PMID: 39940114 DOI: 10.1080/14737175.2025.2461763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Many children are affected by social anxiety disorder (SAD). Pharmacotherapy, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), may be indicated, but a clear understanding of the risks and benefits associated with these pharmacological treatments is needed. AREAS COVERED This expert review explores the risks and benefits of pharmacotherapy for treating SAD in children. EXPERT OPINION Pharmacotherapy may be considered as a treatment when symptoms are complex or severe or when effective psychotherapy, such as cognitive behavioral therapy (CBT), is not accessible. We recommend that clinicians collaborate closely with parents, pediatricians, and psychiatrists in the treatment planning process, while monitoring the effects of pharmacotherapy. Future research should prioritize the personalization of treatments.
Collapse
Affiliation(s)
- Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Chantal Kasch
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Bruno Pereira
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Carolina Barbosa
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
| | - Giovanbattista Andreoli
- Department of Psychology, Philipps University of Marburg, Marburg/Lahn, Germany
- Department of Psychology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Magalhães LS, Strelow DN, Paim MP, Rech TDST, Krüger LD, Braga AL, Neto JSS, Brüning CA, Bortolatto CF. Anxiolytic-like action of 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) in mice: A possible contribution of the serotonergic system. Pharmacol Biochem Behav 2023; 232:173651. [PMID: 37793485 DOI: 10.1016/j.pbb.2023.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Anxiety disorders, characterized by high prevalence rates, cause psychiatric disabilities and are related to impairments in serotoninergic system function. Frequent anxiety recurrence, resistance, and drug adverse effects have driven searches for new therapies. We initially evaluated the anxiolytic-like activity of 3-selanyl-benzo[b]furan compounds (SeBZF1-5) (50 mg/kg, i.g.) in male Swiss mice using the light-dark test (LDT). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) exhibited anxiolytic-like activity. SeBZF3 anxiolytic-like effects were also observed in the novelty-suppressed feeding test (NSFT) (50 mg/kg) and elevated plus-maze test (EPMT) (25 and 50 mg/kg). In the EPMT, anxiolytic-like effects of SeBZF3 (50 mg/kg) were abolished by pretreatment with p-chlorophenylalanine, a selective tryptophan hydroxylase inhibitor (100 mg/kg, i.p. for 4 days), suggesting the involvement of serotonergic mechanisms. Furthermore, we conducted experiments to investigate the synergistic effects of SeBZF3 subeffective doses (5 mg/kg, i.g.) in combination with fluoxetine (a selective serotonin reuptake inhibitor, 5 mg/kg, i.p.) or buspirone (a partial agonist of the 5-HT1A receptor, 2 mg/kg, i.p.). This coadministration resulted in pronounced synergistic effects. We also examined the effects of repeated oral treatment with SeBZF3 at doses of 1 and 5 mg/kg over 14 days and both reduced anxiety signals. In vitro and ex vivo findings revealed that SeBZF3 inhibited cerebral MAO-A activity. These findings collectively imply the potential involvement of serotonergic mechanisms in the anxiolytic-like activity of SeBZF3 in mice. These data offer contributions to the research field of organoselenium compounds and anxiolytics, encouraging the broadening of the search for new effective drugs while offering improved side effect profiles.
Collapse
Affiliation(s)
- Larissa Sander Magalhães
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Mariana Parron Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Letícia Devantier Krüger
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Antonio Luiz Braga
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040- 900 Florianópolis, Santa Catarina, Brazil
| | | | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|