1
|
Lopes-Pacheco M, Winters AG, Jackson JJ, Olson Rd JA, Kim M, Ledwitch KV, Tedman A, Jhangiani AR, Schlebach JP, Meiler J, Plate L, Oliver KE. Recent developments in cystic fibrosis drug discovery: where are we today? Expert Opin Drug Discov 2025:1-24. [PMID: 40202089 DOI: 10.1080/17460441.2025.2490250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION The advent of variant-specific disease-modifying drugs into clinical practice has provided remarkable benefits for people with cystic fibrosis (PwCF), a multi-organ life-limiting inherited disease. However, further efforts are needed to maximize therapeutic benefits as well as to increase the number of PwCF taking CFTR modulators. AREA COVERED The authors discuss some of the key limitations of the currently available CFTR modulator therapies (e.g. adverse reactions) and strategies in development to increase the number of available therapeutics for CF. These include novel methods to accelerate theratyping and identification of novel small molecules and cellular targets representing alternative or complementary therapies for CF. EXPERT OPINION While the CF therapy development pipeline continues to grow, there is a critical need to optimize strategies that will accelerate testing and approval of effective therapies for (ultra)rare CFTR variants as traditional assays and trials are not suitable to address such issues. Another major barrier that needs to be solved is the restricted access to currently available modulator therapies, which remains a significant burden for PwCF who are from racial and ethnic minorities and/or living in underprivileged regions.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ashlyn G Winters
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - JaNise J Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - John A Olson Rd
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Austin Tedman
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ashish R Jhangiani
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jonathan P Schlebach
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
2
|
Terlizzi V, Lopes-Pacheco M. Cystic fibrosis: new challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor. Ther Adv Respir Dis 2025; 19:17534666251323194. [PMID: 40163448 PMCID: PMC11960163 DOI: 10.1177/17534666251323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
Over the past decade, major clinical advances have been made in the healthcare and therapeutic development for cystic fibrosis (CF), a lethal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. CFTR modulators represent innovative treatments that directly target the primary defects in the mutated CFTR protein and have demonstrated significant clinical benefits for many people with CF (pwCF) who are eligible for these treatments. In particular, the triple combination therapy composed of elexacaftor, tezacaftor, and ivacaftor (ETI) has changed the CF therapeutic landscape by significantly improving lung function, quality of life, and predicted survival rates. Here, we provided a comprehensive summary of the impact of ETI on clinical outcomes and the need for further research on long-term efficacy, side effects, pregnancy, possible drug-drug interactions, and extra-pulmonary manifestations. Moreover, a significant number of pwCF are unresponsive to these drugs or cannot afford their high costs. We, therefore, discussed health inequity issues and alternative therapeutic strategies under development aiming to obtain effective therapies for all pwCF.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital IRCCS, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Cystic Fibrosis and Airway Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Bacalhau M, Ferreira FC, Azevedo MFMF, Rosa TP, Buarque CD, Lopes-Pacheco M. Rescue of Mutant CFTR Channel Activity by Investigational Co-Potentiator Therapy. Biomedicines 2025; 13:82. [PMID: 39857666 PMCID: PMC11762957 DOI: 10.3390/biomedicines13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e., co-potentiators). We previously identified LSO-24, a hydroxy-1,2,3-triazole-based compound, as a modest potentiator of p.Arg334Trp-CFTR, a variant with a conductance defect for which no modulator therapy is currently approved. Objective/Methods: We synthesized a new set of LSO-24 structure-based compounds, screened their effects on p.Arg334Trp-CFTR activity, and assessed the additivity of hit compounds to VX-770, ABBV-974, ABBV-3067, and apigenin. After validation by electrophysiological assays, the most promising hits were also assessed in cells expressing other variants with defective gating/conductance, namely p.Pro205Ser, p.Ser549Arg, p.Gly551Asp, p.Ser945Leu, and p.Gly1349Asp. Results: We found that five compounds were able to increase p.Arg334Trp-CFTR activity with similar efficacy, but slightly greater potency promoted by LSO-150 and LSO-153 (EC50: 1.01 and 1.26 μM, respectively). These two compounds also displayed a higher rescue of p.Arg334Trp-CFTR activity in combination with VX-770, ABBV-974, and ABBV-3067, but not with apigenin. When tested in cells expressing other CFTR variants, LSO-24 and its derivative LSO-150 increased CFTR activity for the variants p.Ser549Arg, p.Gly551Asp, and p.Ser945Leu with a further effect in combination with VX-770 or ABBV-3067. No potentiator was able to rescue CFTR activity in p.Pro205Ser-expressing cells, while p.Gly1349Asp-CFTR responded to VX-770 and ABBV-3067 but not to LSO-24 or LSO-150. Conclusions: Our data suggest that these new potentiators might share a common mechanism with apigenin, which is conceivably distinct from that of VX-770 and ABBV-3067. The additive rescue of p.Arg334Trp-, p.Ser549Arg-, p.Gly551Asp-, and p.Ser945Leu-CFTR also indicates that these variants could benefit from the development of a co-potentiator therapy.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | | | - Talita P. Rosa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Da Silva Cunha AL, Blanter M, Renders J, Gouwy M, Lorent N, Boon M, Struyf S, Carlon MS. Inhibiting CFTR through inh-172 in primary neutrophils reveals CFTR-specific functional defects. Sci Rep 2024; 14:31237. [PMID: 39732786 DOI: 10.1038/s41598-024-82535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood. In this study, we aimed to assess which antimicrobial functions are directly impaired by loss of CFTR function in neutrophils. In order to do so, we used a specific inhibitor of CFTR ion channel activity, inh-172. CF neutrophils from PwCF harboring severe CFTR mutations were additionally isolated to further discern CFTR-specific functional defects. We evaluated phagocytosis, reactive oxygen species (ROS) production, neutrophil elastase (NE) and myeloperoxidase (MPO) exocytosis and bacterial killing. The inh-172 model identified decreased acidification of the phagosome, increased bacterial survival and decreased ROS production upon stimulation. In PwCF neutrophils, we observed reduced degranulation of both NE and MPO. When co-culturing neutrophils with CF sputum supernatant and airway epithelial cells, the extent of phagocytosis was reduced, underscoring the importance of recreating an inflammatory environment as seen in PwCF lungs to model immune responses in vitro. Despite low CFTR expression in blood neutrophils, functional defects were found in inh-172-treated and CF neutrophils. The inh-172 model disregards donor variability and allows pinpointing neutrophil functions directly impaired by dysfunctional CFTR.
Collapse
Affiliation(s)
- Ana Lúcia Da Silva Cunha
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Marfa Blanter
- Laboratory for Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Janne Renders
- Laboratory for Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory for Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Natalie Lorent
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Mieke Boon
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Woman and Child, Leuven, Belgium
| | - Sofie Struyf
- Laboratory for Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Marianne S Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
- Center for Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Ehre C, Lopes-Pacheco M, Laselva O. Editorial: Mechanisms of action of small molecules on CFTR mutants and the impact on cystic fibrosis pathogenesis. Front Mol Biosci 2024; 11:1446875. [PMID: 38978977 PMCID: PMC11228291 DOI: 10.3389/fmolb.2024.1446875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airway Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Corrao F, Kelly-Aubert M, Sermet-Gaudelus I, Semeraro M. Unmet challenges in cystic fibrosis treatment with modulators. Expert Rev Respir Med 2024; 18:145-157. [PMID: 38755109 DOI: 10.1080/17476348.2024.2357210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION 'Highly effective' modulator therapies (HEMTs) have radically changed the Cystic Fibrosis (CF) therapeutic landscape. AREAS COVERED A comprehensive search strategy was undertaken to assess impact of HEMT in life of pwCF, treatment challenges in specific populations such as very young children, and current knowledge gaps. EXPERT OPINION HEMTs are prescribed for pwCF with definite genotypes. The heterogeneity of variants complicates treatment possibilities and around 10% of pwCF worldwide remains ineligible. Genotype-specific treatments are prompting theratyping and personalized medicine strategies. Improvement in lung function and quality of life increase survival rates, shifting CF from a pediatric to an adult disease. This implies new studies addressing long-term efficacy, side effects, emergence of adult co-morbidities and possible drug-drug interactions. More sensitive and predictive biomarkers for both efficacy and toxicity are warranted. As HEMTs cross the placenta and are found in breast milk, studies addressing the potential consequences of treatment during pregnancy and breastfeeding are urgently needed. Finally, although the treatment and expected outcomes of CF have improved dramatically in high- and middle-income countries, lack of access in low-income countries to these life-changing medicines highlights inequity of care worldwide.
Collapse
Affiliation(s)
- Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- INSERM, Institut Necker Enfants Malades, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM, Institut Necker Enfants Malades, Paris, France
- Centre de Référence Maladies Rares Mucoviscidose et maladies apparentées. Site constitutif, Université de Paris, Paris, France
- European Reference Lung Center, Frankfurt, Germany
- Université Paris Cité, Paris, France
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre Investigation Clinique, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
7
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
McDonald EF, Oliver KE, Schlebach JP, Meiler J, Plate L. Benchmarking AlphaMissense pathogenicity predictions against cystic fibrosis variants. PLoS One 2024; 19:e0297560. [PMID: 38271453 PMCID: PMC10810519 DOI: 10.1371/journal.pone.0297560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Variants in the cystic fibrosis transmembrane conductance regulator gene (CFTR) result in cystic fibrosis-a lethal autosomal recessive disorder. Missense variants that alter a single amino acid in the CFTR protein are among the most common cystic fibrosis variants, yet tools for accurately predicting molecular consequences of missense variants have been limited to date. AlphaMissense (AM) is a new technology that predicts the pathogenicity of missense variants based on dual learned protein structure and evolutionary features. Here, we evaluated the ability of AM to predict the pathogenicity of CFTR missense variants. AM predicted a high pathogenicity for CFTR residues overall, resulting in a high false positive rate and fair classification performance on CF variants from the CFTR2.org database. AM pathogenicity score correlated modestly with pathogenicity metrics from persons with CF including sweat chloride level, pancreatic insufficiency rate, and Pseudomonas aeruginosa infection rate. Correlation was also modest with CFTR trafficking and folding competency in vitro. By contrast, the AM score correlated well with CFTR channel function in vitro-demonstrating the dual structure and evolutionary training approach learns important functional information despite lacking such data during training. Different performance across metrics indicated AM may determine if polymorphisms in CFTR are recessive CF variants yet cannot differentiate mechanistic effects or the nature of pathophysiology. Finally, AM predictions offered limited utility to inform on the pharmacological response of CF variants i.e., theratype. Development of new approaches to differentiate the biochemical and pharmacological properties of CFTR variants is therefore still needed to refine the targeting of emerging precision CF therapeutics.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis and Airways Diseases, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, United States of America
| | - Jonathan P. Schlebach
- Department of Chemistry, Purdue University, West Lafyette, Indiana, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
9
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|