1
|
Wang S, Zhu S. Comprehensive analysis of novel cancer prediction genes and tumor microenvironment infiltration in colon cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03145-1. [PMID: 37016097 DOI: 10.1007/s12094-023-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Colon cancer with high incidence and mortality is a severe public health problem. As an emerging therapy, immunotherapy has played an active clinical role in tumor treatment, but only a small number of patients respond. METHODS By univariate Cox regression analysis of 165 novel cancer prediction genes (NCPGs), 29 NCPGs related to prognosis were screened. Based on these 29 NCPGs and 336 differentially expressed genes, we constructed two colon cancer subgroups and three gene clusters and analyzed prognosis, activation pathways, and immune infiltration characteristics under various modification patterns. Then each patient was scored and divided into high or low NCPG_score groups. A comprehensive evaluation between NCPG_score and clinical characteristics, tumor microenvironment (TME), tumor somatic mutations, and the potential for immunotherapy was conducted. RESULTS Patients with high NCPG_score were characterized by high tumor mutation burden and high microsatellite instability and were more suitable for immunotherapy. CONCLUSIONS This study screened 29 NCPGs as independent prognostic markers in colon cancer patients, demonstrating their TME, clinicopathological features, and potential roles in immunotherapy, helping to assess prognosis and guiding more personalized immunotherapy.
Collapse
Affiliation(s)
- Shixin Wang
- Department of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Sujie Zhu
- Department of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Boopathi E, Birbe R, Shoyele SA, Den RB, Thangavel C. Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers (Basel) 2022; 14:4305. [PMID: 36077840 PMCID: PMC9455007 DOI: 10.3390/cancers14174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease. Despite their initial response to androgen blockade, most patients eventually will develop metastatic castration-resistant prostate cancer (mCRPC). Bone metastases are common in men with mCRPC, occurring in 30% of patients within 2 years of castration resistance and in >90% of patients over the course of the disease. Patients with mCRPC-induced bone metastasis develop lesions throughout their skeleton; the 5-year survival rate for these patients is 47%. Bone-metastasis-induced early changes in the bone that proceed the osteoblastic response in the bone matrix are monitored and detected via modern magnetic resonance and PET/CT imaging technologies. Various treatment options, such as targeting osteolytic metastasis with bisphosphonates, prednisone, dexamethasone, denosumab, immunotherapy, external beam radiation therapy, radiopharmaceuticals, surgery, and pain medications are employed to treat prostate-cancer-induced bone metastasis and manage bone health. However, these diagnostics and treatment options are not very accurate nor efficient enough to treat bone metastases and manage bone health. In this review, we present the pathogenesis of PCa-induced bone metastasis, its deleterious impacts on vital organs, the impact of metastatic PCa on bone health, treatment interventions for bone metastasis and management of bone- and skeletal-related events, and possible current and future therapeutic options for bone management in the continuum of prostate cancer disease.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth Birbe
- Laboratory Medicine, Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Interdisciplinary Oncology, Department of Biochemistry & Molecular Biology, LSUHSC Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Ge H, Yan Y, Yan M, Guo L, Mao K. Special AT-rich Sequence Binding-Protein 1 (SATB1) Correlates with Immune Infiltration in Breast, Head and Neck, and Prostate Cancer. Med Sci Monit 2020; 26:e923208. [PMID: 32562536 PMCID: PMC7328503 DOI: 10.12659/msm.923208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND SATB1 is essential in gene regulation and associates with T cell development. Aberrant SATB1 expression has been reported in various neoplasms. However, correlations between SATB1 and tumor immune infiltration and prognosis in malignancies still remains unclear. MATERIAL AND METHODS We used Oncomine and the Tumor Immune Estimation Resource database to explore the expression of SATB1 in cancers. In addition, Kaplan-Meier plotter, PrognoScan, and Gene Expression Profiling Interactive Analysis were also used to assess the effects of SATB1 on clinical prognosis. Furthermore, correlations between cancer immune infiltration and SATB1 were analyzed via Tumor Immune Estimation Resource. RESULTS The results demonstrated that SATB1 correlates with prognosis in different types of cancers, such as breast invasive carcinoma (BRAC), head and neck cancer (HNSC), and prostate adenocarcinoma (PRAD). Decreased expression of SATB1 was associated with poor overall and progression-free survival of BRAC patients with positive estrogen receptor (ER) as well as mutated TP53. In addition, B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells infiltration in BRAC, HNSC, and PRAD were also correlated with SATB1 expression level. Moreover, we found strong correlations between SATB1 and various immune markers for BRAC, HNSC, and PRAD. CONCLUSIONS In BRAC, HNSC, and PRAD patients, SATB1 has potential to serve as a prognostic indicator for predicting tumor immune infiltration and prognosis.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China (mainland)
| | - Yan Yan
- Quality Control Department, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China (mainland)
| | - Maozhao Yan
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China (mainland)
| | - Lingfei Guo
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China (mainland)
| | - Kun Mao
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China (mainland)
| |
Collapse
|
4
|
Yan Y, Xu J, Xu B, Wen Q, Zhou J, Zhang L, Zuo L, Lv G, Shi Y. Effects of Xeroderma pigmentosum group C polymorphism on the likelihood of prostate cancer. J Clin Lab Anal 2020; 34:e23403. [PMID: 32488882 PMCID: PMC7521337 DOI: 10.1002/jcla.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Background Numerous studies have assessed the association between xeroderma pigmentosum complementation group C (XPC) polymorphisms and susceptibility of prostate cancer (PCa); however, the findings remain inconsistent. Methods We performed an updated analysis utilizing data from electronic databases to obtain a more accurate estimation of the relationship between XPC rs2228001 A/C polymorphism and PCa risk. We further used in silico tools to investigate this correlation. Results Totally, 5,305 PCa cases and 6,499 control subjects were evaluated. When all studies pooled together, we detected no positive result (recessive genetic model: OR = 1.14, 95% CI = 0.93‐1.40, Pheterogeneity = 0.001, P = .212); nevertheless, the XPC rs2228001 A/C variant was associated with PCa risk in Asian descendants in the subgroup analysis (OR = 1.21, 95% CI = 1.01‐1.43, Pheterogeneity = 0.008, P = .034). In silico tools showed that more than 20 proteins can participate in the protein crosstalk with XPC. The expression of XPC was down‐regulated in all Gleason scores of prostate cancer. Conclusions The present study indicated that the XPC rs2228001 A/C variant may be associated with elevated PCa risk in Asian patients.
Collapse
Affiliation(s)
- Yidan Yan
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianmin Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bin Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaxian Wen
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Zhou
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guoqiang Lv
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yunfeng Shi
- Department of Urology, Wujin Hospital Affiliated Jiangsu University, Changzhou, China
| |
Collapse
|
5
|
Barabadi H, Damavandi Kamali K, Jazayeri Shoushtari F, Tajani B, Mahjoub MA, Alizadeh A, Saravanan M. Emerging Theranostic Silver and Gold Nanomaterials to Combat Prostate Cancer: A Systematic Review. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01588-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|