1
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
2
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
3
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
5
|
De Marchi F, Mareschi K, Ferrero I, Cantello R, Fagioli F, Mazzini L. Effect of mesenchymal stromal cell transplantation on long-term survival in amyotrophic lateral sclerosis. Cytotherapy 2023; 25:798-802. [PMID: 36931995 DOI: 10.1016/j.jcyt.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND AIMS Thanks to their immunomodulatory, tissue-protective and regenerative properties, mesenchymal stromal cells (MSCs) are a promising approach for amyotrophic lateral sclerosis (ALS); however, trials are limited and few follow-up studies have been published. This post-hoc analysis aims to describe the potential long-term effects of MSCs in ALS, analyzing data from two phase 1 clinical trials in ALS patients conducted by our group in 2002 and 2006. METHODS We conducted two consecutive phase 1 prospective, open, pilot clinical trials, enrolling a total of 19 ALS patients. We followed patients for the duration of the disease. For each patient, we used the European Network to Cure ALS (ENCALS) survival prediction model to retrospectively calculate the expected survival at diagnosis. We then compared the predicted disease duration with the observed survival, analyzing patients at a single-patient level. RESULTS Using the ENCALS model, we predicted short survival in one patient, intermediate survival in three patients, long survival in three patients and very long survival in 12 patients. The difference between predicted and observed survival for the whole group was significant and demonstrated a mean predicted survival of 70.79 months (standard deviation [SD], 27.53) and a mean observed survival of 118.8 months (SD, 89.26) (P = 0.016). Based on the monthly ALS Functional Rating Scale-Revised progression rate (median, 0.64/month), we considered 10 of 19 patients slow progressors and nine of 19 patients fast progressors. Of the slow progressors, eight of 10 (80%) had significantly increased disease duration compared with predicted, and only two (20%) had decreased estimated disease duration. By contrast, five of nine (55%) fast progressors had increased disease duration, whereas four (45%) had decreased disease duration. To date, four patients are still alive. CONCLUSIONS The current study represents the first very long-term analysis of survival as an effect of MSC focal transplantation in the central nervous system of ALS patients, demonstrating that MSC transplantation could potentially slow down ALS progression and improve survival. Due to the interindividual variability in clinical course, at the current state of our knowledge, we cannot generalize the results, but these data provide new insights for planning the next generation of efficacy MSC clinical trials in ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Katia Mareschi
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Ivana Ferrero
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Roberto Cantello
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Franca Fagioli
- Department of Public Health and Pediatrics, University of Turin, Torino, Italy; Stem Cell Transplantation and Cellular Therapy Laboratory, Pediatric Onco-Hematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Torino, Italy
| | - Letizia Mazzini
- Amyotrophic Lateral Sclerosis Center, Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
6
|
Lischer M, di Summa PG, Petrou IG, Schaefer DJ, Guzman R, Kalbermatten DF, Madduri S. Mesenchymal Stem Cells in Nerve Tissue Engineering: Bridging Nerve Gap Injuries in Large Animals. Int J Mol Sci 2023; 24:ijms24097800. [PMID: 37175506 PMCID: PMC10177884 DOI: 10.3390/ijms24097800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cell-therapy-based nerve repair strategies hold great promise. In the field, there is an extensive amount of evidence for better regenerative outcomes when using tissue-engineered nerve grafts for bridging severe gap injuries. Although a massive number of studies have been performed using rodents, only a limited number involving nerve injury models of large animals were reported. Nerve injury models mirroring the human nerve size and injury complexity are crucial to direct the further clinical development of advanced therapeutic interventions. Thus, there is a great need for the advancement of research using large animals, which will closely reflect human nerve repair outcomes. Within this context, this review highlights various stem cell-based nerve repair strategies involving large animal models such as pigs, rabbits, dogs, and monkeys, with an emphasis on the limitations and strengths of therapeutic strategy and outcome measurements. Finally, future directions in the field of nerve repair are discussed. Thus, the present review provides valuable knowledge, as well as the current state of information and insights into nerve repair strategies using cell therapies in large animals.
Collapse
Affiliation(s)
- Mirko Lischer
- Center for Bioengineering and Regenerative Medicine, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Pietro G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, University Hospital of Lausanne and University of Lausanne, 1015 Lausanne, Switzerland
| | - Ilias G Petrou
- Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, University Hospitals and University of Geneva, 1205 Geneva, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Center for Bioengineering and Regenerative Medicine, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, University Hospitals and University of Geneva, 1205 Geneva, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Bioengineering and Neuroregeneration, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
7
|
Johnson SA, Fang T, De Marchi F, Neel D, Van Weehaeghe D, Berry JD, Paganoni S. Pharmacotherapy for Amyotrophic Lateral Sclerosis: A Review of Approved and Upcoming Agents. Drugs 2022; 82:1367-1388. [PMID: 36121612 DOI: 10.1007/s40265-022-01769-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder involving loss of upper and lower motor neurons, with most cases ending in death within 3-5 years of onset. Several molecular and cellular pathways have been identified to cause ALS; however, treatments to stop or reverse disease progression are yet to be found. Riluzole, a neuroprotective agent offering only a modest survival benefit, has long been the sole disease-modifying therapy for ALS. Edaravone, which demonstrated statistically significant slowing of ALS disease progression, is gaining approval in an increasing number of countries since its first approval in 2015. Sodium phenylbutyrate and taurursodiol (PB-TURSO) was conditionally approved in Canada in 2022, having shown significant slowing of disease progression and prolonged survival. Most clinical trials have focused on testing small molecules affecting common cellular pathways in ALS: targeting glutamatergic, apoptotic, inflammatory, and oxidative stress mechanisms among others. More recently, clinical trials utilizing stem cell transplantation and other biologics have emerged. This rich and ever-growing pipeline of investigational products, along with innovative clinical trial designs, collaborative trial networks, and an engaged ALS community', provide renewed hope to finding a cure for ALS. This article reviews existing ALS therapies and the current clinical drug development pipeline.
Collapse
Affiliation(s)
- Stephen A Johnson
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Ton Fang
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, Maggiore della Carità Hospital, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Donatienne Van Weehaeghe
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - James D Berry
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Hassan AA, Elkins J, Hassan HY. Case Report: Stem cell therapy in amyotrophic lateral sclerosis. F1000Res 2022; 10:1080. [PMID: 35087666 PMCID: PMC8762680 DOI: 10.12688/f1000research.73967.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease leading to loss of upper and lower motor neurons at both spinal and bulbar levels.
For patients with ALS rehabilitation is important to maintain functional independence, ensure safety and optimize quality of life but is not curative. Stem cell therapy (SCT) provides a new approach to treat previously incurable diseases although peer reviewed published evidence has shown no benefit in ALS for slowing disease progression or functional loss. This case report presents a patient with ALS who underwent SCT but deteriorated rapidly after the procedure. Whether the deterioration was due to the natural progress of the disease or expedited by SCT remains unknown. The ethical considerations of how marketing influences healthcare and individuals’ decisions in desperate situations along with reasons for taking desperate measures are discussed. Patient education and open communication with ALS patients are imperative in gaining patient satisfaction and overcoming ill effects that marketing could have on unconventional methods of intervention. Raising awareness about the availability and access to multidisciplinary care, the timing of decisions with regards to symptom management and end of life care have proven to enhance the quality of life for such patients.
Collapse
Affiliation(s)
- Ala'a A Hassan
- Physiotherapy and Rehabilitation Department, Bahrain Defence Force Hospital, Riffa, Bahrain
| | | | - Hisham Y Hassan
- Banoon ART and Cytogenetics Center, Bahrain Defence Force Hospital, Riffa, Bahrain
| |
Collapse
|
9
|
Isabella AJ, Stonick JA, Dubrulle J, Moens CB. Intrinsic positional memory guides target-specific axon regeneration in the zebrafish vagus nerve. Development 2021; 148:272160. [PMID: 34427308 DOI: 10.1242/dev.199706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Regeneration after peripheral nerve damage requires that axons re-grow to the correct target tissues in a process called target-specific regeneration. Although much is known about the mechanisms that promote axon re-growth, re-growing axons often fail to reach the correct targets, resulting in impaired nerve function. We know very little about how axons achieve target-specific regeneration, particularly in branched nerves that require distinct targeting decisions at branch points. The zebrafish vagus motor nerve is a branched nerve with a well-defined topographic organization. Here, we track regeneration of individual vagus axons after whole-nerve laser severing and find a robust capacity for target-specific, functional re-growth. We then develop a new single-cell chimera injury model for precise manipulation of axon-environment interactions and find that (1) the guidance mechanism used during regeneration is distinct from the nerve's developmental guidance mechanism, (2) target selection is specified by neurons' intrinsic memory of their position within the brain, and (3) targeting to a branch requires its pre-existing innervation. This work establishes the zebrafish vagus nerve as a tractable regeneration model and reveals the mechanistic basis of target-specific regeneration.
Collapse
Affiliation(s)
- Adam J Isabella
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason A Stonick
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
11
|
Garbuzova-Davis S, Shell R, Mustafa H, Hailu S, Willing AE, Sanberg PR, Borlongan CV. Advancing Stem Cell Therapy for Repair of Damaged Lung Microvasculature in Amyotrophic Lateral Sclerosis. Cell Transplant 2021; 29:963689720913494. [PMID: 32207340 PMCID: PMC7444221 DOI: 10.1177/0963689720913494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron
degeneration in the brain and spinal cord. Progressive paralysis of
the diaphragm and other respiratory muscles leading to respiratory
dysfunction and failure is the most common cause of death in ALS
patients. Respiratory impairment has also been shown in animal models
of ALS. Vascular pathology is another recently recognized hallmark of
ALS pathogenesis. Central nervous system (CNS) capillary damage is a
shared disease element in ALS rodent models and ALS patients.
Microvascular impairment outside of the CNS, such as in the lungs, may
occur in ALS, triggering lung damage and affecting breathing function.
Stem cell therapy is a promising treatment for ALS. However, this
therapeutic strategy has primarily targeted rescue of degenerated
motor neurons. We showed functional benefits from intravenous delivery
of human bone marrow (hBM) stem cells on restoration of capillary
integrity in the CNS of an superoxide dismutase 1 (SOD1) mouse model
of ALS. Due to the widespread distribution of transplanted cells via
this route, administered cells may enter the lungs and effectively
restore microvasculature in this respiratory organ. Here, we provided
preliminary evidence of the potential role of microvasculature
dysfunction in prompting lung damage and treatment approaches for
repair of respiratory function in ALS. Our initial studies showed
proof-of-principle that microvascular damage in ALS mice results in
lung petechiae at the late stage of disease and that systemic
transplantation of mainly hBM-derived endothelial progenitor cells
shows potential to promote lung restoration via re-established
vascular integrity. Our new understanding of previously underexplored
lung competence in this disease may facilitate therapy targeting
restoration of respiratory function in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Robert Shell
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hilmi Mustafa
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Surafuale Hailu
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen Med 2021; 6:20. [PMID: 33795700 PMCID: PMC8016966 DOI: 10.1038/s41536-021-00131-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Transplantation of several types of stem cells (SC) for the treatment of amyotrophic lateral sclerosis (ALS) has been evaluated in numerous Phase I/II clinical trials with inconclusive results. Here, we conducted a meta-analysis to systematically assess the outcome of SC therapy trials which report the evolution of each patient before and after cell administration. In this way, we aimed to determine the effect of the SC intervention despite individual heterogeneity in disease progression. We identified 670 references by electronic search and 90 full-text studies were evaluated according to the eligibility criteria. Eleven studies were included comprising 220 cell-treated patients who received mesenchymal (M) SC (n = 152), neural (N) SC (n = 57), or mononuclear cells (MNC: CD34, CD117, and CD133 positive cells) (n = 11). Our analyses indicate that whereas intrathecal injection of mesenchymal stromal cells appears to have a transient positive effect on clinical progression, as measured by the ALS functional rating score, there was a worsening of respiratory function measured by forced vital capacity after all interventions. Based on current evidence, we conclude that optimal cell product and route of administration need to be determined in properly controlled preclinical models before further advancing into ALS patients. In addition, in-depth understanding of disease mechanisms in subsets of patients will help tailoring SC therapy to specific targets and increase the likelihood of improving outcomes.
Collapse
|
13
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, Gandhi S, Tripathi PP. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr Top Med Chem 2021; 20:1142-1153. [PMID: 32282304 DOI: 10.2174/1568026620666200413091101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington's disease (HD). OBJECTIVE We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. METHODS In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. RESULTS In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. CONCLUSION We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.
Collapse
Affiliation(s)
- Sreyashi Chandra
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India
| | - Jhilik Dey
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baby C Pulikkaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India.,Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit K Srivastava
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| | - Prem P Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Cruciani S, Garroni G, Ventura C, Danani A, Nečas A, Maioli M. Stem cells and physical energies: can we really drive stem cell fate? Physiol Res 2020; 68:S375-S384. [PMID: 32118467 DOI: 10.33549/physiolres.934388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells are undifferentiated elements able to self-renew or differentiate to maintain tissue integrity. Within this context, stem cells are able to divide in a symmetric fashion, feature characterising all the somatic cells, or in an asymmetric way, which leads daughter cells to different fates. It is worth highlighting that cell polarity have a critical role in regulating stem cell asymmetric division and the proper control of cell division depends on different proteins involved in cell development, differentiation and maintenance of tissue homeostasis. Moreover, the interaction between cells and the extracellular matrix are crucial in influencing cell behavior, included in terms of mechanical properties as cytoskeleton plasticity and remodelling, and membrane tension. Finally, the activation of specific transcriptional program and epigenetic modifications contributes to cell fate determination, through modulation of cellular signalling cascades. It is well known that physical and mechanical stimuli are able to influence biological systems, and in this context, the effects of electromagnetic fields (EMFs) have already shown a considerable role, even though there is a lack of knowledge and much remains to be done around this topic. In this review, we summarize the historical background of EMFs applications and the main molecular mechanism involved in cellular remodelling, with particular attention to cytoskeleton elasticity and cell polarity, required for driving stem cell behavior.
Collapse
Affiliation(s)
- S Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
18
|
Baumert B, Sobuś A, Gołąb-Janowska M, Paczkowska E, Łuczkowska K, Rogińska D, Zawiślak A, Milczarek S, Osękowska B, Pawlukowska W, Meller A, Machowska-Sempruch K, Wełnicka A, Safranow K, Nowacki P, Machaliński B. Repeated Application of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells-Focus on Immunological Pathways in Patients with ALS. Cells 2020; 9:cells9081822. [PMID: 32752182 PMCID: PMC7463801 DOI: 10.3390/cells9081822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Therapeutic interventions in amyotrophic lateral sclerosis (ALS) are still far from satisfying. Immune modulating procedures raise hopes for slowing the disease progression. Stem cell therapies are believed to possess the ability to regulate innate and adaptive immune response and inflammation processes. Hence, three intrathecal administrations of autologous bone marrow-derived lineage-negative (Lin–) cells were performed every six weeks in 40 sporadic ALS patients. The concentrations of inflammatory-related proteins and expression profiles of selected miRNA in the cerebrospinal fluid (CSF) and plasma at different timepoints post-transplantation were quantified by multiplex Luminex and qRT-PCR. The global gene expression in nucleated blood cells was assessed using the gene microarray technique. According to the ALS Functional Rating Scale (FRSr), the study population was divided into responders (group I, n = 17) and non-responders (group II, n = 23). A thorough analysis of the pro-inflammatory expression profiles, regulated miRNA pathways, and global gene expression profiles at the RNA level revealed the local and systemic effects of Lin– cell therapy on the immune system of patients with ALS. The autologous application of Lin– cells in CSF modulates immune processes and might prevent the progression of neurodegeneration. However, further in-depth studies are necessary to confirm the findings, and prolonged intervention is needed to maintain therapeutic effects.
Collapse
Affiliation(s)
- Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Monika Gołąb-Janowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Alicja Zawiślak
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Bogumiła Osękowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Wioletta Pawlukowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Agnieszka Meller
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Karolina Machowska-Sempruch
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Agnieszka Wełnicka
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
- Correspondence: ; Tel.: +48-91-4661-546
| |
Collapse
|
19
|
Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig 2020; 7:8. [PMID: 32695801 DOI: 10.21037/sci-2020-001] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in clinical trials revolving around stem cell-based therapies. Some of these trials resulted in remarkable impact on various diseases. In this review, the advances and challenges for the development of stem-cell-based therapies are described, with focus on the use of stem cells in dentistry in addition to the advances reached in regenerative treatment modalities in several diseases. The limitations of these treatments and ongoing challenges in the field are also discussed while shedding light on the ethical and regulatory challenges in translating autologous stem cell-based interventions, into safe and effective therapies.
Collapse
Affiliation(s)
- Riham Mohamed Aly
- Department of Basic Dental Science, National Research Centre, Cairo, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| |
Collapse
|
20
|
Ex-Vivo Stimulation of Adipose Stem Cells by Growth Factors and Fibrin-Hydrogel Assisted Delivery Strategies for Treating Nerve Gap-Injuries. Bioengineering (Basel) 2020; 7:bioengineering7020042. [PMID: 32380789 PMCID: PMC7357460 DOI: 10.3390/bioengineering7020042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries often result in lifelong disabilities despite advanced surgical interventions, indicating the urgent clinical need for effective therapies. In order to improve the potency of adipose-derived stem cells (ASC) for nerve regeneration, the present study focused primarily on ex-vivo stimulation of ASC by using growth factors, i.e., nerve growth factor (NGF) or vascular endothelial growth factor (VEGF) and secondly on fibrin-hydrogel nerve conduits (FNC) assisted ASC delivery strategies, i.e., intramural vs. intraluminal loading. ASC were stimulated by NGF or VEGF for 3 days and the resulting secretome was subsequently evaluated in an in vitro axonal outgrowth assay. For the animal study, a 10 mm sciatic nerve gap-injury was created in rats and reconstructed using FNC loaded with ASC. Secretome derived from NGF-stimulated ASC promoted significant axonal outgrowth from the DRG-explants in comparison to all other conditions. Thus, NGF-stimulated ASC were further investigated in animals and found to enhance early nerve regeneration as evidenced by the increased number of β-Tubulin III+ axons. Notably, FNC assisted intramural delivery enabled the improvement of ASC’s therapeutic efficacy in comparison to the intraluminal delivery system. Thus, ex-vivo stimulation of ASC by NGF and FNC assisted intramural delivery may offer new options for developing effective therapies.
Collapse
|
21
|
Reyhani S, Abbaspanah B, Mousavi SH. Umbilical cord-derived mesenchymal stem cells in neurodegenerative disorders: from literature to clinical practice. Regen Med 2020; 15:1561-1578. [PMID: 32479211 DOI: 10.2217/rme-2019-0119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have provided a promising tool for cell therapy. Umbilical cord (UC) is one of the best sources of MSCs since its collection is noninvasive, and effortless, and the cells from this source are more capable and prolific. It has been proven that the differentiation, migration and protective properties of UC-MSCs are superior compared with other kinds of stem cells. Moreover, incurable neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and Huntington, encourage scientists to apply UC-MSCs transplantation in order to find a definite treatment. This review will focus on the preclinical and clinical use of mesenchymal stem cells derived from human umbilical cord in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Samira Reyhani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 14177-44361, Iran
| | - Bahareh Abbaspanah
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran 14177-44361, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 14177-44361, Iran
| |
Collapse
|
22
|
Geijo-Barrientos E, Pastore-Olmedo C, De Mingo P, Blanquer M, Gómez Espuch J, Iniesta F, Iniesta NG, García-Hernández A, Martín-Estefanía C, Barrios L, Moraleda JM, Martínez S. Intramuscular Injection of Bone Marrow Stem Cells in Amyotrophic Lateral Sclerosis Patients: A Randomized Clinical Trial. Front Neurosci 2020; 14:195. [PMID: 32265627 PMCID: PMC7105864 DOI: 10.3389/fnins.2020.00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Preclinical studies suggest that stem cells may be a valuable therapeutic tool in amyotrophic lateral sclerosis (ALS). As it has been demonstrated that there are molecular changes at the end-plate during the early stages of motorneuron degeneration in animal models, we hypothesize that the local effect of this stem cell delivery method could slow the progressive loss of motor units (MUs) in ALS patients. Methods We designed a Phase I/II clinical trial to study the safety of intramuscularly implanting autologous bone marrow mononuclear cells (BMMCs), including stem cells, in ALS patients and their possible effects on the MU of the tibialis anterior (TA) muscle. Twenty-two patients participated in a randomized, double-blind, placebo-controlled trial that consisted of a baseline visit followed by one intramuscular injection of BMNCs, follow-up visits at 30, 90, 180, and 360 days, and an additional year of clinical follow-up. In each patient, one TA muscle was injected with a single dose of BMMCs while the contralateral muscle was given a placebo; the sides were selected randomly. All visits included a complete EMG study of both TA muscles. Results Our results show that (1) the intramuscular injection of BMMCs is a safe procedure; (2) ALS patients show heterogeneities in the degree of TA injury; (3) a comparison of placebo-injected muscles with BMMC-injected muscles showed significant differences in only one parameter, the D50 index used to quantify the Compound Muscle Action Potential (CMAP) scan curve. This parameter was higher in the BMMC-injected TA muscle at both 90 days (placebo side: 29.55 ± 2.89, n = 20; experimental side: 39.25 ± 3.21, n = 20; p < 0.01) and 180 days (placebo side: 29.35 ± 3.29, n = 17; experimental side: 41.24 ± 3.34, n = 17; p < 0.01). Conclusion This procedure had no effect on the TA muscle MU properties, with the exception of the D50 index. Finding differences in just this index supports the fact that it may be much more sensitive than other electrophysiological parameters when studying treatment effects. Given the low number of patients and their heterogeneity, these results justify exploring the efficacy of this procedure in further patients and other muscles, through Phase II trials. Clinical Trial Registration www.clinicaltrials.gov (identifier NCT02286011); EudraCT number 2011-004801-25.
Collapse
Affiliation(s)
| | - Carlos Pastore-Olmedo
- Institute of Neurosciences, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Clinical Neurophysiology Service, San Juan University Hospital, Alicante, Spain
| | - Pedro De Mingo
- Service of Clinical Neurophysiology, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gómez Espuch
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Francisca Iniesta
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Natalia García Iniesta
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Ana García-Hernández
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | | | - Laura Barrios
- Department of Applied Statistics, SGAI-CSIC, Madrid, Spain
| | - José M Moraleda
- Hematopoietic Stem Cell Transplant and Cell Therapy Unit, Hematology Service, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Salvador Martínez
- Institute of Neurosciences, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
23
|
Han F, Lu P. Future Challenges and Perspectives for Stem Cell Therapy of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:141-145. [PMID: 33105500 DOI: 10.1007/978-981-15-4370-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stem cell-based therapy has shown exciting efficacy in pre-clinical studies on different neurodegenerative diseases (NDs). However, no clinically applicable stem-cell-derived neurons are available to the patients with NDs. There exist some obstacles associated with stem cell therapy, which need to be overcome in future clinical studies. In this chapter, more challenges and new strategies will be explored to accelerate the clinical translation of a human embryonic stem cell (hESC)/induced pluripotent stem cell (iPSC)-derived neural cell product to patients with NDs.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Second Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China.
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Balzano F, Campesi I, Cruciani S, Garroni G, Bellu E, Dei Giudici S, Angius A, Oggiano A, Rallo V, Capobianco G, Dessole S, Ventura C, Montella A, Maioli M. Epigenetics, Stem Cells, and Autophagy: Exploring a Path Involving miRNA. Int J Mol Sci 2019; 20:ijms20205091. [PMID: 31615086 PMCID: PMC6834298 DOI: 10.3390/ijms20205091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications.
Collapse
Affiliation(s)
- Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy.
| | - Andrea Angius
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
| | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy.
| | - Vincenzo Rallo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
| | - Giampiero Capobianco
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy.
| | - Salvatore Dessole
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Operative Unit of Clinical Genetics and Developmental Biology, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
- Center for developmental biology and reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
25
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
26
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019. [PMID: 31044582 PMCID: PMC6509626 DOI: 10.3325/cmj.2019.60.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
27
|
Neuroimaging and clinical trials with stem cells in amyotrophic lateral sclerosis: Present and future perspectives. RADIOLOGIA 2019. [DOI: 10.1016/j.rxeng.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Ban J, Sámano C, Mladinic M, Munitic I. Glia in amyotrophic lateral sclerosis and spinal cord injury: common therapeutic targets. Croat Med J 2019; 60:109-120. [PMID: 31044582 PMCID: PMC6509626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 07/17/2024] Open
Abstract
The toolkit for repairing damaged neurons in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI) is extremely limited. Here, we reviewed the in vitro and in vivo studies and clinical trials on nonneuronal cells in the neurodegenerative processes common to both these conditions. Special focus was directed to microglia and astrocytes, because their activation and proliferation, also known as neuroinflammation, is a key driver of neurodegeneration. Neuroinflammation is a multifaceted process that evolves during the disease course, and can be either beneficial or toxic to neurons. Given the fundamental regulatory functions of glia, pathogenic mechanisms in neuroinflammation represent promising therapeutic targets. We also discussed neuroprotective, immunosuppressive, and stem-cell based approaches applicable to both ALS and SCI.
Collapse
Affiliation(s)
| | | | | | - Ivana Munitic
- Ivana Munitic, Department of Biotechnology, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia,
| |
Collapse
|
29
|
Zalfa C, Rota Nodari L, Vacchi E, Gelati M, Profico D, Boido M, Binda E, De Filippis L, Copetti M, Garlatti V, Daniele P, Rosati J, De Luca A, Pinos F, Cajola L, Visioli A, Mazzini L, Vercelli A, Svelto M, Vescovi AL, Ferrari D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis 2019; 10:345. [PMID: 31024007 PMCID: PMC6484011 DOI: 10.1038/s41419-019-1582-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3–L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3–L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.
Collapse
Affiliation(s)
- Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Rota Nodari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Elena Vacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Lidia De Filippis
- Fondazione IRCCS Casa Sollievo della Sofferenza, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Valentina Garlatti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Paola Daniele
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cellular Reprogramming Unit, San Giovanni Rotondo, (FG), Italy
| | - Alessandro De Luca
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Cajola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Letizia Mazzini
- Centro Regionale Esperto SLA Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy. .,Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| |
Collapse
|
30
|
Abati E, Bresolin N, Comi G, Corti S. Advances, Challenges, and Perspectives in Translational Stem Cell Therapy for Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 56:6703-6715. [DOI: 10.1007/s12035-019-1554-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
31
|
Neuroimaging and clinical trials with stem cells in amyotrophic lateral sclerosis: present and future perspectives. RADIOLOGIA 2019; 61:183-190. [PMID: 30606510 DOI: 10.1016/j.rx.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis is a rare neurodegenerative disease with a rapid fatal course. The absence of effective treatments has led to new lines of research, some of which are based on stem cells. Surgical injection into the spinal cord, the most common route of administration of stem cells, has proven safe in trials to test the safety of the procedure. Nevertheless, challenges remain, such as determining the best route of administration or the way of checking the survival of the cells and their interaction with the therapeutic target. To date, the mission of neuroimaging techniques has been to detect lesions and complications in the spine and spinal cord, but neuroimaging also has the potential to supplant histologic study in analyzing the relations between the implanted cells and the therapeutic target, and as biomarkers of the disease, by measuring morphological and functional changes after treatment. These developments would increase the role of radiologists in the clinical management of patients with amyotrophic lateral sclerosis.
Collapse
|
32
|
Siniscalco D, Kannan S, Semprún-Hernández N, Eshraghi AA, Brigida AL, Antonucci N. Stem cell therapy in autism: recent insights. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:55-67. [PMID: 30425534 PMCID: PMC6204871 DOI: 10.2147/sccaa.s155410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorders (ASDs) are characterized by core domains: persistent deficits in social communication and interaction; restricted, repetitive patterns of behavior, interests, or activities. ASDs comprise heterogeneous and complex neurodevelopmental pathologies with well-defined inflammatory conditions and immune system dysfunction. Due to neurobiologic changes underlying ASD development, cell-based therapies have been proposed and applied to ASDs. Indeed, stem cells show specific immunologic properties, which make them promising candidates in ASD treatment. This comprehensive up-to-date review focuses on ASD cellular/molecular abnormalities, potentially useful stem cell types, animal models, and current clinical trials on the use of stem cells in treating autism. Limitations are also discussed.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, University of Campania, Napoli, Italy,
| | - Suresh Kannan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Neomar Semprún-Hernández
- Research Division, Autism Immunology Unit of Maracaibo, Catedra libre de Autismo, Universidad del Zulia, Maracaibo, Venezuela
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari, Italy
| |
Collapse
|