1
|
Li Q, Shen Z, Shen Y, Deng H, Shen Y, Wang J, Zhan G, Zhou C. Identification of immune-related lncRNA panel for predicting immune checkpoint blockade and prognosis in head and neck squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24484. [PMID: 35561269 PMCID: PMC9169191 DOI: 10.1002/jcla.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose Immunotherapy is changing head and neck squamous cell carcinoma (HNSCC) treatment pattern. According to the Chinese Society of Clinical Oncology (CSCO) guidelines, immunotherapy has been deemed as first‐line recommendation for recurrent/metastatic HNSCC, marking that advanced HNSCC has officially entered the era of immunotherapy. Long non‐coding RNAs (lncRNAs) impact every step of cancer immunity. Therefore, reliable immune‐lncRNAs able to accurately predict the immune landscape and survival of HNSCC are crucial to clinical management. Methods In the current study, we downloaded the transcriptomic and clinical data of HNSCC from The Cancer Genome Atlas and identified differentially expressed immune‐related lncRNAs (DEir‐lncRNAs). Further then, Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to identify proper DEir‐lncRNAs to construct optimal risk model. Low‐risk and high‐risk groups were classified based on the optimal cut‐off value generated by the areas under curve for receiver operating characteristic curves (AUC), and Kaplan–Meier survival curves were utilized to validate the prediction model. We then evaluated the model based on the clinical factors, immune cell infiltration, and chemotherapeutic and immunotherapeutic efficacy between two groups. Results In our study, we identified 256 Deir‐lncRNAs in HNSCC. A total of 18 Deir‐lncRNA pairs (consisting of 35 Deir‐lncRNAs) were used to construct a risk model significantly associated with survival of HNSCC. Cox proportional hazard regression analysis confirmed that our risk model could be served as an independent prognostic indicator. Besides, HNSCC patients with low‐risk score significantly enriched of CD8+ T cell, and corelated with high chemosensitivity and immunotherapeutic sensitivity. Conclusion Our risk model could be served as a promising clinical prediction indicator, effective discoursing of the immune cell infiltration of HNSCC patients, and distinguishing patients who could benefit from chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Jianing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang Province, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
2
|
Yu B, Guo X. Prognostic significance of HOXD4 protein expression in human ovarian cancers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1561-1567. [PMID: 35317110 PMCID: PMC8917843 DOI: 10.22038/ijbms.2021.58396.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Objectives Ovarian cancer is the most common gynecological malignancy, ranking as the fifth leading cause of cancer-related deaths among females in the United States. Homeobox D4 (HOXD4) is a transcription factor belonging to the homeobox protein family, which plays a critical role in morphogenesis during embryo development. Here we aimed to study the HOXD4 expression in ovarian serous carcinoma (OSC) and determine its clinical significance. Materials and Methods Real-time quantitative PCR and immunohistochemistry targeting human OSC tissues and adjacent ovarian tissues were performed to correlate the patterns of HOXD4 expression with clinical characteristics and survival outcomes. Cell lines and nude mice were used for verifying the role of HOXD4 in OSC. Results HOXD4 protein was predominantly expressed in OSC tissues compared with nontumorous tissues. The correlation test demonstrated a significant correlation between HOXD4 with tumor FIGO stage. Univariate and multivariate analyses found that HOXD4 expression was associated with poorer overall survival. Furthermore, high expression of HOXD4 protein was observed in OSC cell lines in vitro. Finally, the oncogenic effect of HOXD4 was confirmed by cellular and xenograft experiments. Conclusion HOXD4 protein expression may be associated with a poorer prognosis in OSC. The unfavorable prognostic value of HOXD4 in malignancies and its underlying mechanism are worthy of further investigation.
Collapse
Affiliation(s)
- Bo Yu
- Department of General Surgery, The Second People's Hospital of Lanzhou, Lanzhou 730000, China
| | - Xiaoqing Guo
- Department of Gynecology and Obstetrics, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| |
Collapse
|
3
|
Bioinformatics Analysis of GFAP as a Potential Key Regulator in Different Immune Phenotypes of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1466255. [PMID: 34222466 PMCID: PMC8225431 DOI: 10.1155/2021/1466255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Tumor immune escape plays an essential role in both cancer progression and immunotherapy responses. For prostate cancer (PC), however, the molecular mechanisms that drive its different immune phenotypes have yet to be fully elucidated. Patient gene expression data were analyzed from The Cancer Genome Atlas-prostate adenocarcinoma (TCGA-PRAD) and the International Cancer Genome Consortium (ICGC) databases. We used a Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis and an unsupervised clustering analysis to identify patient subgroups with distinct immune phenotypes. These distinct phenotypes were then explored for associations for differentially expressed genes (DEGs) and both epigenetic and genetic landscapes. Finally, we used a protein-protein interaction analysis to identify key hub genes. We identified two patient subgroups with independent immune phenotypes associated with the expression of Programmed death-ligand 1 (PD-L1). Patient samples in Cluster 1 (C1) had higher scores for immune-cell subsets compared to Cluster 2 (C2), and C2 samples had higher specific somatic mutations, MHC mutations, and genomic copy number variations compared to C1. We also found additional cluster phenotype differences for DNA methylation, microRNA (miRNA) expression, and long noncoding RNA (lncRNA) expression. Furthermore, we established a 4-gene model to distinguish between clusters by integrating analyses for DEGs, lncRNAs, miRNAs, and methylation. Notably, we found that glial fibrillary acidic protein (GFAP) might serve as a key hub gene within the genetic and epigenetic regulatory networks. These results improve our understanding of the molecular mechanisms underlying tumor immune phenotypes that are associated with tumor immune escape. In addition, GFAP may be a potential biomarker for both PC diagnosis and prognosis.
Collapse
|
4
|
Niu N, Shen W, Zhong Y, Bast RC, Jazaeri A, Sood AK, Liu J. Expression of B7-H4 and IDO1 is associated with drug resistance and poor prognosis in high-grade serous ovarian carcinomas. Hum Pathol 2021; 113:20-27. [PMID: 33887301 DOI: 10.1016/j.humpath.2021.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy. While immune checkpoint inhibitors against PD-L1 and CTLA-4 have shown significant effects in multiple tumor types, the response rate to single-agent immune checkpoint inhibitors is low in HGSC. Alternative biomarkers and targets must be identified to guide patient selection and new therapeutic strategies in HGSC. Here, we aim to investigate the clinical significance of novel immune modulators, including B7-H4, IDO1, Tim3, IL6, and IL-8, in patients with HGSC. A total of 48 patients with HGSCs, comprising 24 cases that were sensitive and 24 that were resistant to standard paclitaxel and carboplatin chemotherapy, were selected for our initial analysis. A NanoString assay including 33 immune-related genes was used to compare the expression of different immune regulatory molecules in the sensitive and resistant groups. Differentially expressed proteins were verified using multiplex immunohistochemical staining on tissue arrays of 202 patients with HGSCs who underwent primary surgery at MDACC. We analyzed the expression levels of immune checkpoints and compared expression profiles with clinicopathologic features including response, progression-free survival, and overall survival. HGSC tumors resistant to therapy expressed higher levels of B7-H4 (69.3%), IDO1 (71.8%), Tim3 (89.1%), and inflammatory factors IL-6 and IL-8, and expressed higher Tim3 in stromal components. High expression of B7-H4 and IDO1 was associated with significantly lower overall survival and progression-free survival. B7-H4 and IDO1 were co-expressed in 49.1% of studied cases. A panel of immunomodulatory proteins including B7-H4, IDO1, Tim3, IL-6, and IL-8 are expressed at high levels in HGSCs. These modulators represent novel targets to enhance immunotherapy in patients with HGSCs.
Collapse
Affiliation(s)
- Na Niu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiwei Shen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Oncology, Tangdu Hospital, Xi'an, Shaanxi, 710038, China
| | - Yanping Zhong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Chen H, Tian X, Luan Y, Lu H. Downregulated Long Noncoding RNA DGCR5 Acts as a New Promising Biomarker for the Diagnosis and Prognosis of Ovarian Cancer. Technol Cancer Res Treat 2020; 18:1533033819896809. [PMID: 31868103 PMCID: PMC6928542 DOI: 10.1177/1533033819896809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence have indicated that dysregulated long noncoding ribonucleic acids act as a novel diagnostic and therapeutic target in the progression of ovarian cancer. Long noncoding RNA DiGeorge syndrome critical region gene 5 has been reported to participate in some types of human cancer progresses, but its clinical roles in ovarian cancer had been rarely reported. This study aimed to explore the expression, clinicopathological features, diagnostic, and prognostic values of DiGeorge syndrome critical region gene 5 in ovarian cancer. The total levels of DiGeorge syndrome critical region gene 5 transcript variant 1 (NR_002733.2) and 2 (NR_045121.1) in patients with ovarian cancer were determined by quantitative reverse transcription polymerase chain reaction. The correlation of DiGeorge syndrome critical region gene 5 expression with clinicopathological factors was statistically analyzed by χ2 test. Overall survival analysis was carried out with the Kaplan–Meier curves with the log-rank test. Univariate and multivariate Cox regression analyses were performed to identify the prognostic significance of DiGeorge syndrome critical region gene 5 expression. Receiver operating characteristic curves were constructed to estimate the diagnostic and prognostic usefulness of DiGeorge syndrome critical region gene 5 in ovarian cancer. Results showed that relative DiGeorge syndrome critical region gene 5 expression was reduced by 36.81% and 65.79% in ovarian cancer tissues of patients and Gene Expression Omnibus DataSets (GSE119056) in contrast to normal tissues, respectively. Patients with lymph node metastasis and distant metastasis exhibited lower levels of DiGeorge syndrome critical region gene 5 in contrast to those patients with non-lymph node metastasis and non-distant metastasis, respectively. Low expression of DiGeorge syndrome critical region gene 5 was significantly associated with large tumor size, more lymph node metastasis, present distant metastasis, advanced clinical stage, and short overall survival in patients with ovarian cancer. Low expression of DiGeorge syndrome critical region gene 5 was an independent unfavorable prognostic factor for overall survival in patients with ovarian cancer. Receiver operating characteristics curves for prognosis yielded significant area under curves for lymph node metastasis, clinical stage, and overall survival. In conclusion, our study demonstrated that downregulated DiGeorge syndrome critical region gene 5 may be a new promising biomarker for predicting clinical progression and prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Hongxiao Chen
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiufang Tian
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yajing Luan
- Teaching Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
6
|
Liang L, Zhang Y, Kong Z, Liu F, Shen JW, He Z, Wang H. DNA fragment translocation through the lipid membrane assisted by carbon nanotube. Int J Pharm 2019; 574:118921. [PMID: 31812796 DOI: 10.1016/j.ijpharm.2019.118921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022]
Abstract
DNA delivery through cell membrane is a fundamental step for efficiency gene therapy. As a potential DNA carrier, carbon nanotubes (CNTs) have been extensively studied due to its unique properties. However, the mechanism of DNA translocation with CNTs through cell membrane is still not well understood. In this study, the DNA translocation process through POPC (1-palmitoyl-2-oleoylphosphatidylcholine) membrane with the assistance of CNTs was explored by molecular dynamics (MD) simulation. Our simulation results demonstrated that the CNTs could insert steadily into the POPC membrane, and DNA molecules tends to insert into the inner space of CNTs. With the assistance of CNTs, the free energy of nucleotides passing through the POPC membrane decreases. Moreover, the free energy of nucleotides (DA (deoxyadenosine), DT (deoxythymidine), DC (deoxycytidine), and DG (deoxyguanosine)) passing through POPC membrane follows the order: DA (deoxyadenosine) > DG (deoxyguanosine) > DC (deoxycytidine) > DT (deoxythymidine). These results may promote the design and application of CNT-based gene delivery system.
Collapse
Affiliation(s)
- Lijun Liang
- College of Automation, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology, Jinan, Shandong 250353, People's Republic of China
| | - Zhe Kong
- College of Automation, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Fei Liu
- College of Automation, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| | - Zhiwei He
- College of Automation, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Hongbo Wang
- College of Automation, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|