1
|
Operto FF, Pastorino GMG, Viggiano A, Dell’Isola GB, Dini G, Verrotti A, Coppola G. Epilepsy and Cognitive Impairment in Childhood and Adolescence: A Mini-Review. Curr Neuropharmacol 2023; 21:1646-1665. [PMID: 35794776 PMCID: PMC10514538 DOI: 10.2174/1570159x20666220706102708] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Managing epilepsy in people with an intellectual disability remains a therapeutic challenge and must take into account additional issues such as diagnostic difficulties and frequent drug resistance. Advances in genomic technologies improved our understanding of epilepsy and raised the possibility to develop patients-tailored treatments acting on the key molecular mechanisms involved in the development of the disease. In addition to conventional antiseizure medications (ASMs), ketogenic diet, hormone therapy and epilepsy surgery play an important role, especially in cases of drugresistance. This review aims to provide a comprehensive overview of the mainfactors influencing cognition in children and adolescents with epilepsy and the main therapeutic options available for the epilepsies associated with intellectual disability.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | | | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
2
|
Imdad K, Abualait T, Kanwal A, AlGhannam ZT, Bashir S, Farrukh A, Khattak SH, Albaradie R, Bashir S. The Metabolic Role of Ketogenic Diets in Treating Epilepsy. Nutrients 2022; 14:5074. [PMID: 36501104 PMCID: PMC9738161 DOI: 10.3390/nu14235074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a long-term neurological condition that results in recurrent seizures. Approximately 30% of patients with epilepsy have drug-resistant epilepsy (DRE). The ketogenic diet (KD) is considered an effective alternative treatment for epileptic patients. The aim of this study was to identify the metabolic role of the KD in epilepsy. Ketone bodies induce chemical messengers and alterations in neuronal metabolic activities to regulate neuroprotective mechanisms towards oxidative damage to decrease seizure rate. Here, we discuss the role of KD on epilepsy and related metabolic disorders, focusing on its mechanism of action, favorable effects, and limitations. We describe the significant role of the KD in managing epilepsy disorders.
Collapse
Affiliation(s)
- Kaleem Imdad
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ammara Kanwal
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Ziyad Tareq AlGhannam
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Shahab Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital, Rawalpindi 45000, Pakistan
| | - Sahir Hameed Khattak
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.), National Agriculture Research Centre (NARC), Islamabad 44000, Pakistan
| | - Raidah Albaradie
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| |
Collapse
|
3
|
Elz AS, Trevaskis NL, Porter CJH, Bowen JM, Prestidge CA. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J Control Release 2021; 341:676-701. [PMID: 34896450 DOI: 10.1016/j.jconrel.2021.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
Challenges to effective delivery of drugs following oral administration has attracted growing interest over recent decades. Small molecule drugs (<1000 Da) are generally absorbed across the gastrointestinal tract into the portal blood and further transported to the systemic circulation via the liver. This can result in a significant reduction to the oral bioavailability of drugs that are metabolically labile and ultimately lead to ineffective exposure and treatment. Targeting drug delivery to the intestinal lymphatics is attracting increased attention as an alternative route of drug transportation providing multiple benefits. These include bypassing hepatic first-pass metabolism and selectively targeting disease reservoirs residing within the lymphatic system. The particular physicochemical requirements for drugs to be able to access the lymphatics after oral delivery include high lipophilicity (logP>5) and high long-chain triglyceride solubility (> 50 mg/g), properties required to enable drug association with the lipoprotein transport pathway. The majority of small molecule drugs, however, are not this lipophilic and therefore not substantially transported via the intestinal lymph. This has contributed to a growing body of investigation into prodrug approaches to deliver drugs to the lymphatic system by chemical manipulation. Optimised lipophilic prodrugs have the potential to increase lymphatic transport thereby improving oral pharmacokinetics via a reduction in first pass metabolism and may also target of disease-specific reservoirs within the lymphatics. This may provide advantages for current pharmacotherapy approaches for a wide array of pathological conditions, e.g. immune disease, cancer and metabolic disease, and also presents a promising approach for advanced vaccination strategies. In this review, specific emphasis is placed on medicinal chemistry strategies that have been successfully employed to design lipophilic prodrugs to deliberately enable lymphatic transport. Recent progress and opportunities in medicinal chemistry and drug delivery that enable new platforms for efficacious and safe delivery of drugs are critically evaluated.
Collapse
Affiliation(s)
- Aurelia S Elz
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Natalie L Trevaskis
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Christopher J H Porter
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| | - Joanne M Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021; 38:1497-1518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023]
Abstract
Lipophilic conjugates (LCs) of small molecule drugs have been used widely in clinical and pre-clinical studies to achieve a number of pharmacokinetic and therapeutic benefits. For example, lipophilic derivatives of drugs are employed in several long acting injectable products to provide sustained drug exposure for hormone replacement therapy and to treat conditions such as neuropsychiatric diseases. LCs can also be used to modulate drug metabolism, and to enhance drug permeation across membranes, either by increasing lipophilicity to enhance passive diffusion or by increasing protein-mediated active transport. Furthermore, such conjugation strategies have been employed to promote drug association with endogenous macromolecular carriers (e.g. albumin and lipoproteins), and this in turn results in altered drug distribution and pharmacokinetic profiles, where the changes can be 'general' (e.g. prolonged plasma half-life) or 'specific' (e.g. enhanced delivery to specific tissues in parallel with the macromolecular carriers). Another utility of LCs is to enhance the encapsulation of drugs within engineered nanoscale drug delivery systems, in order to best take advantage of the targeting and pharmacokinetic benefits of nanomedicines. The current review provides a summary of the mechanisms by which lipophilic conjugates, including in combination with delivery vehicles, can be used to control drug delivery, distribution and therapeutic profiles. The article is structured into sections which highlight a specific benefit of LCs and then demonstrate this benefit with case studies. The review attempts to provide a toolbox to assist researchers to design and optimise drug candidates, including consideration of drug-formulation compatibility.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Tim Quach
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- PureTech Health, 6 Tide Street, Boston, MA, 02210, USA
| | - Chris Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Natalie Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Janković SM, Dješević M, Janković SV. Experimental GABA A Receptor Agonists and Allosteric Modulators for the Treatment of Focal Epilepsy. J Exp Pharmacol 2021; 13:235-244. [PMID: 33727865 PMCID: PMC7954424 DOI: 10.2147/jep.s242964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
GABA A receptors are ubiquitous in the central nervous system and there is a huge diversity of receptor subtypes in almost all regions of the brain. However, the expression of GABA A receptor subtypes is altered in both the gray and white matter of patients with focal epilepsy. Although there is a number of anticonvulsants with marketing authorization for the treatment of focal epilepsy which act through GABA A receptors, potentiating the inhibitory effects of GABA, it is necessary to develop more potent and more specific GABAergic anticonvulsants that are effective in drug-resistant patients with focal epilepsy. There are three orthosteric and at least seven allosteric agonist binding sites at the GABA A receptor. In experimental and clinical studies, full agonists of GABA A receptors showed a tendency to cause desensitization of the receptors, tolerance, and physical dependence; therefore, partial orthosteric agonists and positive allosteric modulators of GABA A receptors were further developed. Preclinical studies demonstrated the anticonvulsant efficacy of positive allosteric modulators with selective action on GABA A receptors with α2/α3 subunits, but only a handful of them were further tested in clinical trials. The best results were obtained for clobazam (already marketed), ganaxolone (in phase III trials), CVL-865 (in phase II trials), and padsevonil (in phase III trials). Several compounds with more selective action on GABA A receptors, perhaps only in certain brain regions, have the potential to become effective drugs against specific subtypes of focal-onset epilepsy. However, their development needs time, and in the near future we can expect only one or two new GABA A agonists to obtain marketing authorization for focal epilepsy, an advance that would be of use for just a fraction of patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Miralem Dješević
- Cardiology Department, Private Policlinic Center Eurofarm, Sarajevo, Bosnia and Hercegovina
| | - Snežana V Janković
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
6
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
7
|
Mula M. Pharmacological treatment of focal epilepsy in adults: an evidence based approach. Expert Opin Pharmacother 2020; 22:317-323. [PMID: 32990097 DOI: 10.1080/14656566.2020.1829594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Focal seizures represent the most common seizure type and focal epilepsies the most common epilepsy type. Anti-seizure medications (ASMs) still represent the main form of treatment for epilepsy. AREAS COVERED The aim of this review article is to provide an overview of available evidence about current and upcoming pharmacological options and strategies for adults with focal epilepsy focusing on the last 5 years. EXPERT OPINION Seventeen drugs are currently approved for the treatment of focal seizures including cenobamate as the very latest option. Ten of these drugs are also licensed for monotherapy. Level A evidence for initial monotherapy is available for seven drugs with no robust data supporting that one drug is superior to the other. Safety, tolerability as well as pharmacoeconomic reasons would then drive treatment decisions. Data on adjunctive treatment are available for 13 ASMs showing again no obvious difference in terms of efficacy. Evidence on specific drug combinations is almost non-existent and the final decision of combining specific drugs is based on the experience of the individual clinician rather than on robust evidence. Current outcome measures do not consider number of previously failed drugs and the observation period is often too short.
Collapse
Affiliation(s)
- Marco Mula
- Institute of Medical and Biomedical Education, St George's University of London and Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust , London, UK
| |
Collapse
|
8
|
Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 2020; 159:105026. [PMID: 32562815 DOI: 10.1016/j.phrs.2020.105026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.
Collapse
|
9
|
Thomas P, Pang Y. Anti-apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front Endocrinol (Lausanne) 2020; 11:417. [PMID: 32670200 PMCID: PMC7331777 DOI: 10.3389/fendo.2020.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The neurosteroids progesterone and allopregnanolone regulate numerous neuroprotective functions in neural tissues including inhibition of epileptic seizures and cell death. Many of progesterone's actions are mediated through the nuclear progesterone receptor (PR), while allopregnanolone is widely considered to be devoid of hormonal activity and instead acts through modulation of GABA-A receptor activity. However, allopregnanolone can also exert hormonal actions in neuronal cells through binding and activating membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor (PAQR) family. The distribution and functions of the five mPR subtypes (α, β, γ, δ, ε) in neural tissues are briefly reviewed. mPRδ has the highest binding affinity for allopregnanolone and is highly expressed throughout the human brain. Low concentrations (20 nM) of allopregnanolone act through mPRδ to stimulate G protein (Gs)-dependent signaling pathways resulting in reduced cell death and apoptosis in mPRδ-transfected cells. The 3-methylated synthetic analog of allopregnanolone, ganaxolone, is currently undergoing clinical trials as a promising GABA-A receptor-selective antiepileptic drug (AED). New data show that low concentrations (20 nM) of ganaxolone also activate mPRδ signaling and exert anti-apoptotic actions through this receptor. Preliminary evidence suggests that ganaxolone can also exert neuroprotective effects by activating inhibitory G protein (Gi)-dependent signaling through mPRα and/or mPRβ in neuronal cells. The results indicate that mPRs are likely intermediaries in multiple actions of natural and synthetic neurosteroids in the brain. Potential off-target effects of ganaxolone through activation of mPRs in patients receiving long-term treatment for epilepsy and other disorders should be considered and warrant further investigation.
Collapse
|
10
|
Bibi D, Shusterman B, Nocentini A, Supuran CT, Bialer M. Stereoselective pharmacokinetic and pharmacodynamic analysis of a CNS-active sulphamoylphenyl carbamate derivative. J Enzyme Inhib Med Chem 2019; 34:1078-1082. [PMID: 31124389 PMCID: PMC6534253 DOI: 10.1080/14756366.2019.1612887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
3-Methylpentyl(4-sulphamoylphenyl)carbamate (MSPC) came as the most potent compound out of a new series of carbamates composed of phenyl-ethanol or branched aliphatic alcohols, and 4-benzenesulphonamide-carbamic acid. In this study, the anticonvulsant activity and pharmacokinetics (PKs) of MSPC-two individual enantiomers were comparatively analysed in rats as well as their carbonic anhydrase (CA) inhibition. The anticonvulsant activity of MSPC enantiomers was evaluated at the rat-maximal electroshock (MES) test, and their CA inhibition evaluated. (R)-MSPC had a 29% higher clearance and consequently, a lower plasma exposure area under the curve (AUC) than (S)-MSPC and racemic-MSPC. Nevertheless, (R)-MSPC had a better brain permeability than its (S)-enantiomer with brain-to-plasma-(AUC)-ratio (BPR) of 2.07 ((R)-enantiomer), 1.85 (racemate), and 0.79 ((S)-enantiomer). As a whole body (in vivo) pharmacodynamic (PD) measure, MSPC-anticonvulsant maximal electroshock seizure (MES) activity was less enantioselective than MSPC-CA inhibition. The lack of significant differences between racemic-MSPC and its individual enantiomers suggest that their anticonvulsant activity might be due to multiple mechanisms of action.
Collapse
Affiliation(s)
- David Bibi
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel
| | - Bella Shusterman
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel
| | - Alessio Nocentini
- b Department of Neurofarba , University of Florence , Florence , Italy
| | - Claudiu T Supuran
- b Department of Neurofarba , University of Florence , Florence , Italy
| | - Meir Bialer
- a Faculty of Medicine, School of Pharmacy, Institute of Drug Research , The Hebrew University of Jerusalem , Jerusalem , Israel.,c Faculty of Medicine, School of Pharmacy, David R. Bloom Center for Pharmacy , The Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|