1
|
Gandolfo S, Bombardieri M, Pers JO, Mariette X, Ciccia F. Precision medicine in Sjögren's disease. THE LANCET. RHEUMATOLOGY 2024; 6:e636-e647. [PMID: 38723653 DOI: 10.1016/s2665-9913(24)00039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 08/23/2024]
Abstract
Sjögren's disease is a clinically and pathophysiologically heterogeneous disease to which precision medicine, on the basis of clinical and biological heterogeneity, has been not always applicable. In patients with Sjögren's disease, the relationship between dysregulated biological pathways and symptoms such as fatigue and pain or clinical manifestations is often difficult to establish. This clinical and biological dissociation also poses challenges when defining appropriate clinical endpoints for clinical trials. In the last few years, however, research efforts have been focused on gaining a better understanding of the considerable heterogeneity of Sjögren's disease by developing stratification models aimed at clustering patients with this condition into homogenous subgroups characterised by distinctive molecular signatures, biomarkers, clinical features, and outcomes. In this Review, we discuss current evidence regarding clinical, laboratory, histological, and biomolecular stratification in Sjögren's disease and examine how available stratification data can guide precision medicine and inform the design of future clinical trials.
Collapse
Affiliation(s)
- Saviana Gandolfo
- Rheumatology Section, Ospedale San Giovanni Bosco, Naples, Italy.
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jacques-Olivier Pers
- Lymphocytes B Autoimmunité et Immunothérapies, UMR1227, INSERM, CHU de Brest, University of Brest, Brest, France
| | - Xavier Mariette
- Rheumatology Department, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, Paris, France
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
2
|
Cai Y, Zhang Y, Wang S, Changyong E. MiR-23b-3p alleviates Sjögren's syndrome by targeting SOX6 and inhibiting the NF-κB signaling. Mol Immunol 2024; 172:68-75. [PMID: 38901181 DOI: 10.1016/j.molimm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE MicroRNA-23b-3p has been demonstrated to act as a safeguard against several autoimmune diseases. However, its role in Sjögren's syndrome (SS) remains unclear. METHODS In order to investigate its role in SS, we administered agomiR-23b-3p or agomiR-NC to non-obese diabetic (NOD) mice via tail vein weekly for 6 weeks. The study examined the saliva flow rate, histological changes in submandibular glands, and levels of autoantibodies. Additionally, the levels of several cytokines, cell apoptosis, and NF-κB signaling were evaluated. The protective effect of miR-23b-3p was confirmed in a cell model. RESULTS The results demonstrated that miR-23b-3p overexpression improved salivary flow rates, inhibited lymphocyte infiltration, reduced cytokine levels, and suppressed cell apoptosis in NOD mice. Moreover, NF-κB signaling was inactivated following miR-23b-3p overexpression. In a cellular model of SS, overexpression of miR-23b-3p protected submandibular gland epithelial cells exposed to IFN-γ against apoptosis and inflammation by targeting SOX6. CONCLUSIONS The study concludes that miR-23b-3p alleviates SS by targeting SOX6 and inhibiting the NF-κB signaling pathway. The miR-23b-3p/SOX6 axis represents a promising avenue for the development of novel therapeutic strategies for SS.
Collapse
Affiliation(s)
- Yan Cai
- Department of Oral and Maxillofacial Radiology, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Yi Zhang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Sihan Wang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - E Changyong
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, PR China.
| |
Collapse
|
3
|
Luo Q, Wu K, Li H, Wang H, Wang C, Xia D. Weighted Gene Co-expression Network Analysis and Machine Learning Validation for Identifying Major Genes Related to Sjogren's Syndrome. Biochem Genet 2024:10.1007/s10528-024-10750-4. [PMID: 38678487 DOI: 10.1007/s10528-024-10750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
Sjogren's syndrome (SS) is an autoimmune disorder characterized by dry mouth and dry eyes. Its pathogenic mechanism is currently unclear. This study aims to integrate weighted gene co-expression network analysis (WGCNA) and machine learning to identify key genes associated with SS. We downloaded 3 publicly available datasets from the GEO database comprising the gene expression data of 231 SS and 78 control cases, including GSE84844, GSE48378 and GSE51092, and carried out WGCNA to elucidate differences in the abundant genes. Candidate biomarkers for SS were then identified using a LASSO regression model. Totally 6 machine-learning models were subsequently utilized for validating the biological significance of major genes according to their expression. Finally, immune cell infiltration of the SS tissue was assessed using the CIBERSORT algorithm. A weighted gene co-expression network was built to divide genes into 10 modules. Among them, blue and red modules were most closely associated with SS, and showed significant enrichment in type I interferon signaling, cellular response to type I interferon and response to virus, etc. Combined machine learning identified 5 hub genes, including OAS1, EIF2AK2, IFITM3, TOP2A and STAT1. Immune cell infiltration analysis showed that SS was associated with CD8+ T cell, CD4+ T cell, gamma delta T cell, NK cell and dendritic cell activation. WGCNA was combined with machine learning to uncover genes that may be involved in SS pathogenesis, which can be utilized for developing SS biomarkers and appropriate therapeutic targets.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, Southwest Jiaotong University Affiliated Chengdu Third People' s Hospital, Chengdu, 610036, Sichuan, China
| | - Kaiwen Wu
- Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People' s Hospital, Chengdu, 610036, Sichuan, China
| | - He Li
- Department of Emergency, PLA Naval Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Han Wang
- Department of Cardiology, Southwest Jiaotong University Affiliated Chengdu Third People' s Hospital, Chengdu, 610036, Sichuan, China
| | - Chen Wang
- Department of Burn and Plastic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
- Department of Clinical Medicine, Hainan Health Vocational College, Hainan, 572000, China.
| |
Collapse
|
4
|
Liu Z, Wei W, Zhang J, Yang X, Feng Z, Zhang B, Hou X. Single-cell transcriptional profiling reveals aberrant gene expression patterns and cell states in autoimmune diseases. Mol Immunol 2024; 165:68-81. [PMID: 38159454 DOI: 10.1016/j.molimm.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis(MS), primary Sjögren syndrome (pSS), and systemic lupus erythematosus (SLE) share numerous clinical symptoms and serological characteristics. We analyzed 153550 cells of scRNA-seq data of 17 treatment-naive patients (5 MS, 5 pSS, and 7 SLE) and 10 healthy controls, and we examined the enrichment of biological processes, differentially expressed genes (DEGs), immune cell types, and their subpopulations, and cell-cell communication in peripheral blood mononuclear cells (PBMCs). The percentage of B cells, megakaryocytes, monocytes, and proliferating T cells presented significant changes in autoimmune diseases. The enrichment of cell types based on gene expression revealed an elevated monocyte. MIF, MK, and GALECTIN signaling networks were obvious differences in autoimmune diseases. Taken together, our analysis provides a comprehensive map of the cell types and states of ADs patients at the single-cell level to understand better the pathogenesis and treatment of these ADs.
Collapse
Affiliation(s)
- Zhenyu Liu
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Wujun Wei
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Junning Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhihui Feng
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Biao Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xianliang Hou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
JAK/STAT Pathway Targeting in Primary Sjögren Syndrome. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:95-102. [PMID: 36788973 PMCID: PMC9895869 DOI: 10.2478/rir-2022-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune systemic disease mainly affecting exocrine glands and resulting in disabling symptoms, as dry eye and dry mouth. Mechanisms underlying pSS pathogenesis are intricate, involving multiplanar and, at the same time, interlinked levels, e.g., genetic predisposition, epigenetic modifications and the dysregulation of both immune system and glandular-resident cellular pathways, mainly salivary gland epithelial cells. Unravelling the biological and molecular complexity of pSS is still a great challenge but much progress has been made in recent years in basic and translational research field, allowing the identification of potential novel targets for therapy development. Despite such promising novelties, however, none therapy has been specifically approved for pSS treatment until now. In recent years, growing evidence has supported the modulation of Janus kinases (JAK) - signal transducers and activators of transcription (STAT) pathways as treatment strategy immune mediated diseases. JAK-STAT pathway plays a crucial role in autoimmunity and systemic inflammation, being involved in signal pathways of many cytokines. This review aims to report the state-of-the-art about the role of JAK-STAT pathway in pSS, with particular focus on available research and clinical data regarding the use of JAK inhibitors in pSS.
Collapse
|
6
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
7
|
Tarn J, Lendrem D, McMeekin P, Lendrem C, Hargreaves B, Ng W. Primary Sjögren's syndrome: Longitudinal real-world, observational data on health-related quality of life. J Intern Med 2022; 291:849-855. [PMID: 35018685 PMCID: PMC9305875 DOI: 10.1111/joim.13451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a chronic inflammatory condition, which presents with symptoms of dryness, pain, fatigue and often symptoms of anxiety and depression. Health-related quality of life (HRQoL) is significantly reduced in pSS and the direct and indirect health costs of pSS are substantial. This study aims to determine how symptom burden, disease activity and demographics associate with HRQoL longitudinally over a median of 24-month follow-up period in pSS. METHODS Longitudinal EuroQoL-5 dimension (EQ-5D)-3L data from the Newcastle pSS cohort (n = 377) were evaluated using a survival analysis strategy. Kaplan-Meier and Cox proportional hazards analysis were performed using baseline Newcastle Sjogren's Stratification Tool (NSST) subgroup, EULAR Sjogren's Syndrome Patient Reported Index (ESSPRI), EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), disease duration, age and sex as covariates including polypharmacy and comorbidity score, where data were available (n = 191). RESULTS Of the 377 pSS participants analysed in this study, 16% experienced a decline in HRQoL to a health state comparable to or worse than death. NSST subgroup and ESSPRI score had a significant relationship with time to 'EQ-5D event', whereas baseline ESSDAI, age, disease duration and sex did not. CONCLUSION In pSS, symptom burden and to a great extent NSST subgroup, rather than systemic disease activity, has a significant relationship with HRQoL longitudinally. Improvements in symptom burden have the potential to produce significant impacts on long-term HRQoL in pSS.
Collapse
Affiliation(s)
- Jessica Tarn
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Dennis Lendrem
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Peter McMeekin
- Faculty of Health and Life ScienceNorthumbria UniversityNewcastle upon TyneUK
| | - Clare Lendrem
- NIHR Newcastle In Vitro Diagnostics Co‐operativeNewcastle UniversityNewcastle upon TyneUK
| | - Ben Hargreaves
- Musculoskeletal DirectorateNewcastle‐upon‐Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Wan‐Fai Ng
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal DirectorateNewcastle‐upon‐Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
8
|
Zandonella Callegher S, Giovannini I, Zenz S, Manfrè V, Stradner MH, Hocevar A, Gutierrez M, Quartuccio L, De Vita S, Zabotti A. Sjögren syndrome: looking forward to the future. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100295. [PMID: 35634352 PMCID: PMC9131387 DOI: 10.1177/1759720x221100295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a heterogeneous disease characterised by a wide spectrum of manifestations that vary according to the different stages of the disease and among different subsets of patients. The aim of this qualitative literature review is to summarise the recent advances that have been reported in pSS, ranging from the early phases to the established disease and its complications. We analysed the diagnostic, prognostic, and management aspects of pSS, with a look into future clinical and research developments. The early phases of pSS, usually antedating diagnosis, allow us to investigate the pathophysiology and risk factors of the overt disease, thus allowing better and timely patient stratification. Salivary gland ultrasound (SGUS) is emerging as a valid complementary, or even alternative, tool for histopathology in the diagnosis of pSS, due to a standardised scoring system with good agreement and performance. Other promising innovations include the application of artificial intelligence to SGUS, ultrasound-guided core needle biopsy, and a wide array of novel diagnostic and prognostic biomarkers. Stratifying pSS patients through the integration of clinical, laboratory, imaging, and histopathological data; differentiating between activity-related and damage-related manifestations; and identifying patients at higher risk of lymphoma development are essential steps for an optimal management and individualised treatment approach. As new treatment options are emerging for both glandular and systemic manifestations, there is a need for a more reliable treatment response evaluation. pSS is a complex and heterogeneous disease, and many distinct aspects should be considered in the different stages of the disease and subsets of patients. In recent years, efforts have been made to improve our understanding of the disease, and certainly in the coming years, some of these novelties will become part of our routine clinical practice, thus improving the management of pSS patients.
Collapse
Affiliation(s)
| | - Ivan Giovannini
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Sabine Zenz
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Valeria Manfrè
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Martin H. Stradner
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Alojzija Hocevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marwin Gutierrez
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
- Rheumatology Center of Excellence, Mexico City, Mexico
| | - Luca Quartuccio
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Alen Zabotti
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
9
|
Soret P, Le Dantec C, Desvaux E, Foulquier N, Chassagnol B, Hubert S, Jamin C, Barturen G, Desachy G, Devauchelle-Pensec V, Boudjeniba C, Cornec D, Saraux A, Jousse-Joulin S, Barbarroja N, Rodríguez-Pintó I, De Langhe E, Beretta L, Chizzolini C, Kovács L, Witte T, Bettacchioli E, Buttgereit A, Makowska Z, Lesche R, Borghi MO, Martin J, Courtade-Gaiani S, Xuereb L, Guedj M, Moingeon P, Alarcón-Riquelme ME, Laigle L, Pers JO. A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome. Nat Commun 2021; 12:3523. [PMID: 34112769 PMCID: PMC8192578 DOI: 10.1038/s41467-021-23472-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 02/08/2023] Open
Abstract
There is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics. Here, we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren's syndrome patients based on the multi-omic profiling of whole blood samples from a European cohort of over 300 patients, and a similar number of age and gender-matched healthy volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cytometry data, combined with clinical parameters, we identify four groups of patients with distinct patterns of immune dysregulation. The biomarkers we identify can be used by machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation of response to treatments in clinical trials.
Collapse
Affiliation(s)
- Perrine Soret
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | | - Emiko Desvaux
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | | - Bastien Chassagnol
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Sandra Hubert
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Guillaume Desachy
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | | - Cheïma Boudjeniba
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | - Alain Saraux
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | | | - Nuria Barbarroja
- Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Ignasi Rodríguez-Pintó
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Ellen De Langhe
- Skeletal Biology and Engineering Research Center, KU Leuven and Division of Rheumatology, UZ Leuven, Belgium
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Carlo Chizzolini
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland
| | | | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medical University Hannover, Hannover, Germany
| | | | - Anne Buttgereit
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | - Zuzanna Makowska
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | - Ralf Lesche
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | | | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Sophie Courtade-Gaiani
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Laura Xuereb
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Mickaël Guedj
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Philippe Moingeon
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Laurence Laigle
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | |
Collapse
|
10
|
van Beers JJ, Damoiseaux JG. Immune Monitoring upon Treatment with Biologics in Sjögren's Syndrome: The What, Where, When, and How. Biomolecules 2021; 11:116. [PMID: 33467204 PMCID: PMC7830440 DOI: 10.3390/biom11010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the auto-immunology clinic, and many more are on the way. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas addressing the former target results in neutralization of the soluble factor and binding to the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency with infections as a possible consequence. Therefore, immune monitoring is needed to prevent such adverse side effects of immunotherapy. In this paper, different immunotherapies used in Sjögren's syndrome, as well as different approaches to monitoring the immune system, are discussed.
Collapse
Affiliation(s)
- Joyce J.B.C. van Beers
- Central Diagnostic Laboratory Maastricht University Medical Center, Laboratory Specialist in Medical Immunology and Clinical Chemistry, 6202 AZ Maastricht, The Netherlands
| | - Jan G.M.C. Damoiseaux
- Central Diagnostic Laboratory Maastricht University Medical Center, Laboratory Specialist in Medical Immunology, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
11
|
Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology 2020; 28:1421-1438. [DOI: 10.1007/s10787-020-00762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
12
|
Wang J, Zhou L, Liu B. Update on disease pathogenesis, diagnosis, and management of primary Sjögren's syndrome. Int J Rheum Dis 2020; 23:723-727. [PMID: 32297483 DOI: 10.1111/1756-185x.13839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a typical multisystem disease, characterized by lymphocytic infiltration of the exocrine glands leading to glandular dysfunction. Multiple systemic manifestations occur in those of serious conditions, with different courses and outcomes. Its pathogenesis is complex, and its diagnosis and management are being constantly updated and improved. We have failed to have much progress in targeted immunotherapy for pSS, and as yet this is still based on empirical treatment. Many studies have tried to define pSS more accurately, to study its pathogenesis, to find effective treatment strategies, opening up new avenues for early diagnosis and precise management of pSS.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingyan Zhou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Liu
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Toward better outcomes in Sjögren's syndrome: The promise of a stratified medicine approach. Best Pract Res Clin Rheumatol 2020; 34:101475. [PMID: 32005417 DOI: 10.1016/j.berh.2019.101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sjögren's syndrome is a systemic autoimmune disease defined by its targeted inflammation of the salivary and lacrimal glands, resulting in dry mouth and eyes in the majority and persistent or recurrent salivary gland enlargement in a minority of those affected. Involvement of major organs, an increased risk of lymphoma, and autoantibodies against ubiquitous cellular ribonucleoproteins define some of its systemic features. Those affected have a high symptom burden and the development of disease-modifying therapies is thus an urgent need. A stratified medicine approach offers promise as a means of targeting specific therapies to patients for whom the mechanism of action is most relevant. Implementation of this approach will require an understanding of the pathophysiological processes underlying different patient subsets, and then identifying or developing a drug that targets this pathway. Such therapies would be most effective if implemented early in the disease course before the advent of adverse outcomes or glandular damage. This review will provide a disease overview followed by an analysis of the feasibility of a stratified medicine approach, focusing on the disease heterogeneity, predictors of disease progression and adverse outcomes, and recent advances in the development of relevant outcome measures and new therapies.
Collapse
|