1
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
2
|
Mori M, Ghirga F, Amato B, Secco L, Quaglio D, Romeo I, Gambirasi M, Bergamo A, Covaceuszach S, Sgarra R, Botta B, Manfioletti G. Selection of Natural Compounds with HMGA-Interfering Activities and Cancer Cell Cytotoxicity. ACS OMEGA 2023; 8:32424-32431. [PMID: 37720761 PMCID: PMC10500574 DOI: 10.1021/acsomega.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 09/19/2023]
Abstract
HMGA proteins are intrinsically disordered (ID) chromatin architectural factors characterized by three DNA binding domains (AT-hooks) that allow them to bind into the DNA minor groove of AT-rich stretches. HMGA are functionally involved in regulating transcription, RNA processing, DNA repair, and chromatin remodeling and dynamics. These proteins are highly expressed and play essential functions during embryonic development. They are almost undetectable in adult tissues but are re-expressed at high levels in all cancers where they are involved in neoplastic transformation and cancer progression. We focused on identifying new small molecules capable of binding into the minor groove of AT-rich DNA sequences that could compete with HMGA for DNA binding and, thus, potentially interfere with their activities. Here, a docking-based virtual screening of a unique high diversity in-house library composed of around 1000 individual natural products identified 16 natural compounds as potential minor groove binders that could inhibit the interaction between HMGA and DNA. To verify the ability of these selected compounds to compete with HMGA proteins, we screened them using electrophoretic mobility shift assays. We identified Sorocein C, a Diels-Alder (D-A)-type adducts, isolated from Sorocea ilicifolia and Sorocea bonplandii with an HMGA/DNA-displacing activity and compared its activity with that of two structurally related compounds, Sorocein A and Sorocein B. All these compounds showed a cytotoxicity effect on cancer cells, suggesting that the Sorocein-structural family may provide new and yet unexplored chemotypes for the development of minor groove binders to be evaluated as anticancer agents.
Collapse
Affiliation(s)
- Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Francesca Ghirga
- Department
of Chemistry and Technology of Drugs, Sapienza-University
of Rome, Rome 00185, Italy
| | - Beatrice Amato
- Department
of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Luca Secco
- Department
of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Deborah Quaglio
- Department
of Chemistry and Technology of Drugs, Sapienza-University
of Rome, Rome 00185, Italy
| | - Isabella Romeo
- Department
of Chemistry and Technology of Drugs, Sapienza-University
of Rome, Rome 00185, Italy
| | - Marta Gambirasi
- Department
of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alberta Bergamo
- Department
of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Sonia Covaceuszach
- Institute
of Crystallography, National Research Council, Trieste Outstation, Basovizza, Trieste 34149, Italy
| | - Riccardo Sgarra
- Department
of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Bruno Botta
- Department
of Chemistry and Technology of Drugs, Sapienza-University
of Rome, Rome 00185, Italy
| | | |
Collapse
|
3
|
HMGA1 Regulates the Expression of Replication-Dependent Histone Genes and Cell-Cycle in Breast Cancer Cells. Int J Mol Sci 2022; 24:ijms24010594. [PMID: 36614035 PMCID: PMC9820469 DOI: 10.3390/ijms24010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment.
Collapse
|
4
|
Zambelli A, Sgarra R, De Sanctis R, Agostinetto E, Santoro A, Manfioletti G. Heterogeneity of triple-negative breast cancer: understanding the Daedalian labyrinth and how it could reveal new drug targets. Expert Opin Ther Targets 2022; 26:557-573. [PMID: 35638300 DOI: 10.1080/14728222.2022.2084380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype with the least favorable outcomes. However, recent research efforts have generated an enhanced knowledge of the biology of the disease and have provided a new, more comprehensive understanding of the multifaceted ecosystem that underpins TNBC. AREAS COVERED In this review, the authors illustrate the principal biological characteristics of TNBC, the molecular driver alterations, targetable genes, and the biomarkers of immune engagement that have been identified across the subgroups of TNBC. Accordingly, the authors summarize the landscape of the innovative and investigative biomarker-driven therapeutic options in TNBC that emerge from the unique biological basis of the disease. EXPERT OPINION The therapeutic setting of TNBC is rapidly evolving. An enriched understanding of the tumor spatial and temporal heterogeneity and the surrounding microenvironment of this complex disease can effectively support the development of novel and tailored opportunities of treatment.
Collapse
Affiliation(s)
- Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Riccardo Sgarra
- Department of Life sciences, University of Trieste, Trieste, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Agostinetto
- Department of Biomedical Sciences, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium and Humanitas University, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy
| | | |
Collapse
|
5
|
High-mobility-group protein A1 in MPN progression. Blood 2022; 139:2730-2732. [PMID: 35511192 DOI: 10.1182/blood.2022016145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/20/2022] Open
|
6
|
Sgubin M, Pegoraro S, Pellarin I, Ros G, Sgarra R, Piazza S, Baldassarre G, Belletti B, Manfioletti G. HMGA1 positively regulates the microtubule-destabilizing protein stathmin promoting motility in TNBC cells and decreasing tumour sensitivity to paclitaxel. Cell Death Dis 2022; 13:429. [PMID: 35504904 PMCID: PMC9065117 DOI: 10.1038/s41419-022-04843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients. We demonstrate that HMGA1 depletion leads to a downregulation of stathmin expression and activity on microtubules resulting in decreased TNBC cell motility. We show that this pathway is mediated by the cyclin-dependent kinase inhibitor p27kip1 (p27). Indeed, the silencing of HMGA1 expression in TNBC cells results both in an increased p27 protein stability and p27-stathmin binding. When the expression of both HMGA1 and p27 is silenced, we observe a significant rescue in cell motility. These data, obtained in cellular models, were validated in BC patients. In fact, we find that patients with high levels of both HMGA1 and stathmin and low levels of p27 have a statistically significant lower survival probability in terms of relapse-free survival (RFS) and distant metastasis-free survival (DMFS) with respect to the patient group with low HMGA1, low stathmin, and high p27 expression levels. Finally, we show in an in vivo xenograft model that depletion of HMGA1 chemo-sensitizes tumour cells to paclitaxel, a drug that is commonly used in TNBC treatments. This study unveils a new interaction among HMGA1, p27, and stathmin that is critical in BC cell migration. Moreover, our data suggest that taxol-based treatments may be more effective in reducing the tumour burden when tumour cells express low levels of HMGA1.
Collapse
Affiliation(s)
- Michela Sgubin
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Pegoraro
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Pellarin
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gloria Ros
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: International School for Advanced Studies (SISSA), Area of Neuroscience Trieste, Trieste, Italy
| | - Riccardo Sgarra
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Guidalberto Manfioletti
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Fiscon G, Pegoraro S, Conte F, Manfioletti G, Paci P. Gene network analysis using SWIM reveals interplay between the transcription factor-encoding genes HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer. FEBS Lett 2021; 595:1569-1586. [PMID: 33835503 DOI: 10.1002/1873-3468.14085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
Among breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive with the worst prognosis and the highest rates of metastatic disease. To identify TNBC gene signatures, we applied the network-based methodology implemented by the SWIM software to gene expression data of TNBC patients in The Cancer Genome Atlas (TCGA) database. SWIM enables to predict key (switch) genes within the co-expression network, whose perturbations in expression pattern and abundance may contribute to the (patho)biological phenotype. Here, SWIM analysis revealed an interesting interplay between the genes encoding the transcription factors HMGA1, FOXM1, and MYBL2, suggesting a potential cooperation among these three switch genes in TNBC development. The correlative nature of this interplay in TNBC was assessed by in vitro experiments, demonstrating how they may actually modulate the expression of each other.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,Fondazione per la Medicina Personalizzata, Genova, Italy
| | | | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | | | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,Department of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
| |
Collapse
|