1
|
Li J, Lv A, Chen M, Xu L, Huang H. Activating transcription factor 4 in erythroid development and β -thalassemia: a powerful regulator with therapeutic potential. Ann Hematol 2024; 103:2659-2670. [PMID: 37906269 DOI: 10.1007/s00277-023-05508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. β -Thalassemia is a blood disorder arising from mutations in the β -globin gene. Reactivating the expression of the γ -globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with β -thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated γ -globin transcription and its effects on erythroid development may unveil novel targets for β -thalassemia treatment.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Meihuan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
2
|
Ting PY, Borikar S, Kerrigan JR, Thomsen NM, Aghania E, Hinman AE, Reyes A, Pizzato N, Fodor BD, Wu F, Belew MS, Mao X, Wang J, Chitnis S, Niu W, Hachey A, Cobb JS, Savage NA, Burke A, Paulk J, Dovala D, Lin J, Clifton MC, Ornelas E, Ma X, Ware NF, Sanchez CC, Taraszka J, Terranova R, Knehr J, Altorfer M, Barnes SW, Beckwith REJ, Solomon JM, Dales NA, Patterson AW, Wagner J, Bouwmeester T, Dranoff G, Stevenson SC, Bradner JE. A molecular glue degrader of the WIZ transcription factor for fetal hemoglobin induction. Science 2024; 385:91-99. [PMID: 38963839 DOI: 10.1126/science.adk6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/05/2024] [Indexed: 07/06/2024]
Abstract
Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in β-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fabian Wu
- Novartis Biomedical Research, Basel, Switzerland
| | | | - Xiaohong Mao
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Jian Wang
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | - Wei Niu
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Ashley Burke
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | - James Lin
- Novartis Biomedical Research, Emeryville, CA, USA
| | | | | | - Xiaolei Ma
- Novartis Biomedical Research, Emeryville, CA, USA
| | | | | | | | | | - Judith Knehr
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Corbacioglu S, Frangoul H, Locatelli F, Hobbs W, Walters M. Defining curative endpoints for transfusion-dependent β-thalassemia in the era of gene therapy and gene editing. Am J Hematol 2024; 99:422-429. [PMID: 38100154 DOI: 10.1002/ajh.27166] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 02/15/2024]
Abstract
β-thalassemia is a monogenic disease that results in varying degrees of anemia. In the most severe form, known as transfusion-dependent β-thalassemia (TDT), the clinical hallmarks are ineffective erythropoiesis and a requirement of regular, life-long red blood cell transfusions, with the development of secondary clinical complications such as iron overload, end-organ damage, and a risk of early mortality. With the exception of allogeneic hematopoietic cell transplantation, current treatments for TDT address disease symptoms and not the underlying cause of disease. Recently, a growing number of gene addition and gene editing-based treatments for patients with TDT with the potential to provide a one-time functional cure have entered clinical trials. A key challenge in the design and evaluation of these trials is selecting endpoints to evaluate if these novel genetic therapies have a curative versus an ameliorative effect. Here, we present an overview of the pathophysiology of TDT, review emerging gene addition or gene editing therapeutic approaches for TDT currently in clinical trials, and identify a series of endpoints that can quantify therapeutic effects, including a curative outcome.
Collapse
Affiliation(s)
| | - Haydar Frangoul
- Sarah Cannon Research Institute and the Children's Hospital at TriStar Centennial, Nashville, Tennessee, USA
| | - Franco Locatelli
- IRCCS, Ospedale Pediatrico Bambino, Gesù Rome, Catholic University of the Sacred Heart, Rome, Italy
| | - William Hobbs
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts, USA
| | - Mark Walters
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| |
Collapse
|
4
|
Wu SM, Li C, Huang SR, Jiang F, Li DZ. A 6-Year Follow-up of a Chinese Child with Homozygous β 0-Thalaasemia and a Heterozygous KLF1 Mutation. Hemoglobin 2024; 48:60-62. [PMID: 38314576 DOI: 10.1080/03630269.2024.2310804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
Patients with the genotype of β0/β0 for β-thalassemia (β-thal) usually behave as β-thal major (β-TM) phenotype which is transfusion-dependent. The pathophysiology of β-thal is the imbalance between α/β-globin chains. The degree of α/β-globin imbalance can be reduced by the more effective synthesis of γ-globin chains, and increased Hb F levels, modifying clinical severity of β-TM. We report a Chinese child who had homozygous β0-thal and a heterozygous KLF1 mutation. The patient had a moderate anemia since 6 months old, keeping a baseline Hb value of 8.0-9.0 g/dL. She had normal development except for a short stature (3rd percentile) until 6 years old, when splenomegaly and facial bone deformities occurred. Although genetic alteration of KLF1 expression in β0/β0 patients can result in some degree of disease alleviation, our case shows that it is insufficient to ameliorate satisfactorily the presentation. This point should be borne in mind for physicians who provide the genetic counseling and prenatal diagnosis to at-risk families.
Collapse
Affiliation(s)
- Shao-Min Wu
- Prenatal Diagnosis Center, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Chan Li
- Prenatal Diagnosis Center, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Su-Ran Huang
- Prenatal Diagnosis Center, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
5
|
Drakopoulou E, Georgomanoli M, Lederer CW, Panetsos F, Kleanthous M, Voskaridou E, Valakos D, Papanikolaou E, Anagnou NP. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34 + Cells from Sickle Cell Disease Patients. Viruses 2022; 14:v14122716. [PMID: 36560719 PMCID: PMC9783242 DOI: 10.3390/v14122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
We have previously demonstrated that both the original γ-globin lentiviral vector (LV) GGHI and the optimized GGHI-mB-3D LV, carrying the novel regulatory elements of the 3D HPFH-1 enhancer and the 3' β-globin UTR, can significantly increase HbF production in thalassemic CD34+ cells and ameliorate the disease phenotype in vitro. In the present study, we investigated whether the GGHI-mB-3D vector can also exhibit an equally therapeutic effect, following the transduction of sickle cell disease (SCD) CD34+ cells at MOI 100, leading to HbF increase coupled with HbS decrease, and thus, to phenotype improvement in vitro. We show that GGHI-mB-3D LV can lead to high and potentially therapeutic HbF levels, reaching a mean 2-fold increase to a mean value of VCN/cell of 1.0 and a mean transduction efficiency of 55%. Furthermore, this increase was accompanied by a significant 1.6-fold HbS decrease, a beneficial therapeutic feature for SCD. In summary, our data demonstrate the efficacy of the optimized γ-globin lentiviral vector to improve the SCD phenotype in vitro, and highlights its potential use in future clinical SCD trials.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgomanoli
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | | | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Ersi Voskaridou
- Thalassemia and Sickle Cell Disease Centre, Laiko General Hospital, 11527 Athens, Greece
| | - Dimitrios Valakos
- Laboratory of Molecular Biology, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
6
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|