1
|
Guan Z, Zhang Z, Wang K, Qiao S, Ma T, Wu L. Targeting myeloid cells for hematological malignancies: the present and future. Biomark Res 2025; 13:59. [PMID: 40205623 PMCID: PMC11983845 DOI: 10.1186/s40364-025-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
Hematological malignancies are a diverse group of cancers that originate in the blood and bone marrow and are characterized by the abnormal proliferation and differentiation of hematopoietic cells. Myeloid blasts, which are derived from normal myeloid progenitors, play a central role in these diseases by disrupting hematopoiesis and driving disease progression. In addition, other myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, adapt dynamically to the tumor microenvironment, where they can promote immune evasion and resistance to treatment. This review explores the unique characteristics and pathogenic mechanisms of myeloid blasts, the immunosuppressive roles of myeloid cells, and their complex interactions within the TME. Furthermore, we highlight emerging therapeutic approaches targeting myeloid cells, focusing on strategies to reprogram their functions, inhibit their suppressive effects, or eliminate pathological populations altogether, as well as the latest preclinical and clinical trials advancing these approaches. By integrating insights from these studies, we aim to provide a comprehensive understanding of the roles of myeloid cells in hematological malignancies and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zihui Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Peking University First Hospital, Beijing, 100034, China
| | - Zhengqi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kaiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shukai Qiao
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Teng Ma
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Tang H, Chen Y, Zhang N, Deng J, Zhou K. Higher expression of programmed cell death 4 (PDCD4) in acute myeloid leukemia is associated with better prognosis after chemotherapy. Ann Hematol 2023; 102:3401-3412. [PMID: 37878012 DOI: 10.1007/s00277-023-05516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Acute myeloid leukemia (AML) is a common heterogeneous malignancy. Novel molecular markers aid diagnosis, patient sub-categorization, and optimal clinical decisions. Here, we explored the prognostic implications associated with the expression of the programmed cell death (PDCD) family of molecules in AML patients. Based on the findings from the TCGA and OHSU cohorts, we observed that the mRNA abundance of PDCD4 is significantly higher compared to other molecules within the PDCD family. Furthermore, high expression of PDCD4 was associated with predicted long-term patient survival in diagnosed AML patients. In the chemotherapy group, patients with high PDCD4 expression showed a tendency toward longer overall survival (OS) (P = 0.0266) and event-free survival (EFS) (P = 0.0008). High PDCD4 levels served as a favorable independent predictor for both OS and EFS in AML patients. However, subgroup analyses in the hematopoietic stem cell transplantation (HSCT) group revealed no significant difference in OS or EFS between individuals with high and low PDCD4 expression. Furthermore, in the low PDCD4 expression group, AML patients who underwent HSCT experienced improved survival outcomes (P = 0.0015), helping to mitigate the unfavorable prognosis associated with PDCD4 downregulation. Conversely, in the high PDCD4 expression group, HSCT offered a notable short-term survival advantage, while patients with high PDCD4 expression responded favorably to long-term survival through chemotherapy. Biological function enrichment showed that the expression of PDCD4 was correlated with complement and coagulation cascades, cell receptor signaling pathways, and cholesterol metabolism. The findings from this study will aid in better categorizing heterogeneous AML patients and guiding more appropriate clinical decision-making.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430061, China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| | - Kang Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
3
|
Zhang Z, Deng C, Zhu P, Yao D, Shi J, Zeng T, Huang W, Huang Z, Wu Z, Li J, Xiao M, Fu L. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia. Cancer Sci 2023; 114:3873-3883. [PMID: 37591615 PMCID: PMC10551605 DOI: 10.1111/cas.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood cancer. Effective immunotherapies for AML are hindered by a lack of understanding of the tumor microenvironment (TME). Here, we retrieved published single-cell RNA sequencing data for 128,688 cells derived from 29 bone marrow aspirates, including 21 AML patients and eight healthy donors. We established a global tumor ecosystem including nine main cell types. Myeloid, T, and NK cells were further re-clustered and annotated. Developmental trajectory analysis indicated that exhausted CD8+ T cells might develop via tissue residual memory T cells (TRM) in the AML TME. Significantly higher expression levels of exhaustion molecules in AML TRM cells suggested that these cells were influenced by the TME and entered an exhausted state. Meanwhile, the upregulation of checkpoint molecules and downregulation of granzyme were also observed in AML NK cells, suggesting an exhaustion state. In conclusion, our comprehensive profiling of T/NK subpopulations provides deeper insights into the AML immunosuppressive ecosystem, which is critical for immunotherapies.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Cong Deng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Zhu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Danlin Yao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Jinlong Shi
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Tiansheng Zeng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Wenhui Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zeyong Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhihua Wu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Junyi Li
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Min Xiao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Fu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
4
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
5
|
Aru B, Pehlivanoğlu C, Dal Z, Dereli-Çalışkan NN, Gürlü E, Yanıkkaya-Demirel G. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia. Front Immunol 2023; 14:1108200. [PMID: 36742324 PMCID: PMC9895857 DOI: 10.3389/fimmu.2023.1108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the most frequent leukemia type in adulthood accounting for about 80% of all cases. The most common treatment strategy for the treatment of AML includes chemotherapy, in rare cases radiotherapy and stem cell and bone marrow transplantation are considered. Immune checkpoint proteins involve in the negative regulation of immune cells, leading to an escape from immune surveillance, in turn, causing failure of tumor cell elimination. Immune checkpoint inhibitors (ICIs) target the negative regulation of the immune cells and support the immune system in terms of anti-tumor immunity. Bone marrow microenvironment (BMM) bears various blood cell lineages and the interactions between these lineages and the noncellular components of BMM are considered important for AML development and progression. Administration of ICIs for the AML treatment may be a promising option by regulating BMM. In this review, we summarize the current treatment options in AML treatment and discuss the possible application of ICIs in AML treatment from the perspective of the regulation of BMM.
Collapse
Affiliation(s)
- Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Zeynep Dal
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | | | - Ege Gürlü
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Gülderen Yanıkkaya-Demirel
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye,*Correspondence: Gülderen Yanıkkaya-Demirel,
| |
Collapse
|
6
|
Pagliuca S, Gurnari C, Zhang K, Kewan T, Bahaj W, Mori M, Nautiyal I, Rubio MT, Ferraro F, Maciejewski JP, Wang L, Visconte V. Comprehensive Transcriptomic Analysis of VISTA in Acute Myeloid Leukemia: Insights into Its Prognostic Value. Int J Mol Sci 2022; 23:ijms232314885. [PMID: 36499220 PMCID: PMC9735915 DOI: 10.3390/ijms232314885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The V-domain Ig suppressor of T-cell activation (VISTA) has been recognized as a critical negative regulator of antitumor immune response and is gaining growing interest as a potential pharmacological target in immunotherapy. This molecule is highly expressed in hematopoietic stem cells and myeloid compartment, and it has been found upmodulated in acute myeloid leukemia (AML). However, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we aimed to explore whether this immune checkpoint regulator could play a role in the generation of an immune escape environment in AML patients. We characterized VISTA mRNA expression levels in leukemia cell lines and in large publicly available cohorts of specimens from bone marrow of healthy individuals and AML patients at diagnosis by deploying bulk and single-cell RNA sequencing. We also defined the correlations with leukemia-associated burden using results of whole-exome sequencing of AML samples at disease onset. We showed that VISTA expression linearly increased across the myeloid differentiation tree in normal hematopoiesis. Accordingly, its transcript was highly enriched in AML cell lines as well as in AML patients at diagnosis presenting with myelomonocytic and monocytic differentiation. A strong correlation was seen with NPM1 mutations regardless of the presence of FLT3 lesions. Furthermore, VISTA expression levels at baseline correlated with disease recurrence in patients with normal karyotype and NPM1 mutations, a subgroup traditionally considered as favorable according to current diagnostic schemes. Indeed, when compared to patients with long-term remission (>5 years after standard chemotherapy regimens), cases relapsing within 2 years from diagnosis had increased VISTA expression in both leukemia and T cells. Our results suggest a rationale for developing VISTA-targeted therapeutic strategies to treat molecularly defined subgroups of AML patients to prevent disease recurrence and treatment resistance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
- Service d’hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopôle de l’Université de Lorraine, 54500 Vandoeuvre les Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Keman Zhang
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Tariq Kewan
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
| | - Waled Bahaj
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
| | - Minako Mori
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ishani Nautiyal
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
| | - Marie Thérèse Rubio
- Service d’hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopôle de l’Université de Lorraine, 54500 Vandoeuvre les Nancy, France
| | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jaroslaw P. Maciejewski
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
| | - Li Wang
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department of Cleveland Clinic, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
7
|
Mazzarella L, Enblad G, Olweus J, Malmberg KJ, Jerkeman M. Advances in immune therapies in hematological malignancies. J Intern Med 2022; 292:205-220. [PMID: 34624160 DOI: 10.1111/joim.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Gómez-Llobell M, Peleteiro Raíndo A, Climent Medina J, Gómez Centurión I, Mosquera Orgueira A. Immune Checkpoint Inhibitors in Acute Myeloid Leukemia: A Meta-Analysis. Front Oncol 2022; 12:882531. [PMID: 35530329 PMCID: PMC9069679 DOI: 10.3389/fonc.2022.882531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Experience with immune checkpoint inhibitors (ICIs) in the treatment of acute myeloid leukemia (AML) is still limited and based on early clinical trials, with no reported randomized clinical data. In this study, we reviewed the available evidence on the use of ICIs, either in monotherapy or in combination with other treatments, in different AML settings, including newly diagnosed AML, relapsed or refractory (R/R) AML and maintenance treatment after allogeneic-HSCT (allo-HSCT). Materials and Methods A systematic literature review was conducted using PubMed electronic database as primary source to identify the studies involving immune checkpoint inhibitors in first-line and R/R AML. We recorded Overall Response (ORR), Complete Response (CR) and Complete Response with incomplete count recovery (CRi) rates, overall survival (OS) and immune-related adverse events ≥ grade 3 (irAEs). Hereafter, we analyzed the overall profile of these ICIs by performing a meta-analysis of the reported outcomes. Results A total of 13 studies were identified where ICI was used in patients with AML. ORR across these studies was 42% (IC95%, 31% - 54%) and CR/CRi was 33% (IC95%, 22%-45%). Efficacy was also assessed considering the AML setting (first-line vs. relapsed/refractory) and results pointed to higher response rates in first-line, compared to R/R. Mean overall survival was 8.9 months [median 8 months, (IC95%, 3.9 - 15.5)]. Differences between first line and R/R settings were observed, since average overall survival in first line was 12.0 months, duplicating the OS in R/R which was 7.3 months. Additionally, the most specific adverse events (AEs) of these therapies are immune-related adverse events (irAEs), derived from their inflammatory effects. Grade ≥3 irAEs rate was low and similar among studies [12% (95%CI 8% - 16%)]. Conclusion ICIs in combination with intensive chemotherapy, hypomethylating agents or other targeted therapies are gaining interest in the management of hematological malignancies such as AML. However, results obtained from clinical trials are modest and limited by both, the type of design and the clinical trial phase. Hopefully, the prospective study of these therapies in late-stage development could help to identify patients who may benefit from ICI therapy.
Collapse
Affiliation(s)
- Marina Gómez-Llobell
- Hematology Department, Medical University General Hospital Gregorio Marañon, Madrid, Spain
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) University Hospital of Santiago de Compostela (SERGAS), Department of Hematology, Santiago de Compostela, Spain
| | | | | | - Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) University Hospital of Santiago de Compostela (SERGAS), Department of Hematology, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Togami K, Chung SS, Madan V, Booth CAG, Kenyon CM, Cabal-Hierro L, Taylor J, Kim SS, Griffin GK, Ghandi M, Li J, Li YY, Angelot-Delettre F, Biichle S, Seiler M, Buonamici S, Lovitch SB, Louissaint A, Morgan EA, Jardin F, Piccaluga PP, Weinstock DM, Hammerman PS, Yang H, Konopleva M, Pemmaraju N, Garnache-Ottou F, Abdel-Wahab O, Koeffler HP, Lane AA. Sex-Biased ZRSR2 Mutations in Myeloid Malignancies Impair Plasmacytoid Dendritic Cell Activation and Apoptosis. Cancer Discov 2022; 12:522-541. [PMID: 34615655 PMCID: PMC8831459 DOI: 10.1158/2159-8290.cd-20-1513] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sun Sook Chung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Christopher A G Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Christopher M Kenyon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida
| | - Sunhee S Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gabriel K Griffin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Mahmoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Fanny Angelot-Delettre
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Sabeha Biichle
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | | | | | - Scott B Lovitch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fabrice Jardin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy
- Department of Biomolecular Strategies, Genetics, Avant-Garde Therapies and Neurosciences (SBGN), Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- School of Health, Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francine Garnache-Ottou
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, California
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| |
Collapse
|
10
|
A Randomized Phase 2 Trial of Azacitidine ± Durvalumab as First-line Therapy for Higher-Risk Myelodysplastic Syndromes. Blood Adv 2021; 6:2207-2218. [PMID: 34972214 PMCID: PMC9006291 DOI: 10.1182/bloodadvances.2021005487] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
This is the first reported randomized trial of immune checkpoint inhibitor therapy in HR-MDS. Azacitidine combined with the PD-L1 inhibitor durvalumab was feasible but did not improve outcomes over azacitidine alone.
Azacitidine-mediated hypomethylation promotes tumor cell immune recognition but may increase the expression of inhibitory immune checkpoint molecules. We conducted the first randomized phase 2 study of azacitidine plus the immune checkpoint inhibitor durvalumab vs azacitidine monotherapy as first-line treatment for higher-risk myelodysplastic syndromes (HR-MDS). In all, 84 patients received 75 mg/m2 subcutaneous azacitidine (days 1-7 every 4 weeks) combined with 1500 mg intravenous durvalumab on day 1 every 4 weeks (Arm A) for at least 6 cycles or 75 mg/m² subcutaneous azacitidine alone (days 1-7 every 4 weeks) for at least 6 cycles (Arm B). After a median follow-up of 15.25 months, 8 patients in Arm A and 6 in Arm B remained on treatment. Patients in Arm A received a median of 7.9 treatment cycles and those in Arm B received a median of 7.0 treatment cycles with 73.7% and 65.9%, respectively, completing ≥4 cycles. The overall response rate (primary end point) was 61.9% in Arm A (26 of 42) and 47.6% in Arm B (20 of 42; P = .18), and median overall survival was 11.6 months (95% confidence interval, 9.5 months to not evaluable) vs 16.7 months (95% confidence interval, 9.8-23.5 months; P = .74). Durvalumab-related adverse events (AEs) were reported by 71.1% of patients; azacitidine-related AEs were reported by 82% (Arm A) and 81% (Arm B). Grade 3 or 4 hematologic AEs were reported in 89.5% (Arm A) vs 68.3% (Arm B) of patients. Patients with TP53 mutations tended to have a worse response than patients without these mutations. Azacitidine increased programmed cell death ligand 1 (PD-L1 [CD274]) surface expression on bone marrow granulocytes and monocytes, but not blasts, in both arms. In summary, combining azacitidine with durvalumab in patients with HR-MDS was feasible but with more toxicities and without significant improvement in clinical outcomes over azacitidine alone. This trial was registered at www.clinicaltrials.gov as #NCT02775903.
Collapse
|
11
|
Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of Action of Hypomethylating Agents: Endogenous Retroelements at the Epicenter. Front Oncol 2021; 11:650473. [PMID: 33768008 PMCID: PMC7985079 DOI: 10.3389/fonc.2021.650473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Abnormal DNA methylation patterns are thought to drive the pathobiology of high-risk myelodysplastic syndromes (HR-MDS) and acute myeloid leukemia (AML). Sixteen years after their initial approval, the hypomethylating agents (HMAs), 5-azacytidine (AZA) and 5-aza-2′-deoxycytidine, remain the mainstay of treatment for HR-MDS and AML. However, a connection of the hypomethylating or additional effects of HMAs with clinical responses remains yet to be shown, and the mode of action of HMAs remains obscure. Given the relatively short-lived responses and the inevitable development of resistance in HMAs, a thorough understanding of the antineoplastic mechanisms employed by HMAs holds critical importance. Recent data in cancer cell lines demonstrate that reactivation of endogenous retroelements (EREs) and induction of a cell-intrinsic antiviral response triggered by RNA neotranscripts may underlie the antitumor activity of HMAs. However, data on primary CD34+ cells derived from patients with HR-MDS failed to confirm a link between HMA-mediated ERE modulation and clinical response. Though difficult to reconcile the apparent discrepancy, it is possible that HMAs mediate their effects in more advanced levels of differentiation where cells become responsive to interferon, whereas, inter-individual variations in the process of RNA editing and, in particular, in the ADAR1/OAS/RNase L pathway may also confound the associations of clinical response with the induction of viral mimicry. Further ex vivo studies along with clinical correlations in well-annotated patient cohorts are warranted to decipher the role of ERE derepression in the antineoplastic mechanisms of HMAs.
Collapse
Affiliation(s)
- Chryssoula Kordella
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
12
|
Pemmaraju N, Chen NC, Verstovsek S. Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:409-429. [PMID: 33641877 DOI: 10.1016/j.hoc.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloproliferative neoplasms are characterized by chronic inflammation. The discovery of constitutively active JAK-STAT signaling associated with driver mutations has led to clinical and translational breakthroughs. Insights into the other pathways and novel factors of potential importance are being actively investigated. Various classes of agents with immunomodulating or immunosuppressive properties have been used with varying degrees of success in treating myeloproliferative neoplasms. Early clinical trials are investigating the feasibility, effectiveness, and safety of immune checkpoint inhibitors, cell-based immunotherapies, and SMAC mimetics. The dynamic landscape of immunotherapy and immunomodulation in myeloproliferative neoplasms is the topic of the present review.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #3000, Houston, TX 77030, USA.
| | - Natalie C Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #428, Houston, TX 77030, USA
| |
Collapse
|
13
|
Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther 2021; 21:523-534. [PMID: 33334180 DOI: 10.1080/14737140.2021.1865814] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Dysfunction of the immune system is a hallmark of cancer. Through increased understanding of the complex interactions between immunity and cancer, immunotherapy has emerged as a treatment modality for different types of cancer. Promising activity with immunotherapy has been reported in numerous malignancies, but challenges such as limited response rates and treatment resistance remain. Furthermore, outcomes with this therapeutic approach in hematologic malignancies are even more limited than in solid tumors. T-cell immunoglobulin domain and mucin domain 3 (TIM-3) has emerged as a potential immune checkpoint target in both solid tumors and hematologic malignancies. TIM-3 has been shown to promote immune tolerance, and overexpression of TIM-3 is associated with more aggressive or advanced disease and poor prognosis. AREAS COVERED This review examines what is currently known regarding the biology of TIM-3 and clinical implications of targeting TIM-3 in cancer. Particular focus is given to myeloid malignancies. EXPERT OPINION The targeting of TIM-3 is a promising therapeutic approach in cancers, including hematologic cancers such as myeloid malignancies which have not benefited much from current immunotherapeutic treatment approaches. We anticipate that with further clinical evaluation, TIM-3 blockade will emerge as an important treatment strategy in myeloid malignancies.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Rami S Komrokji
- Malignant Hematology Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
15
|
Shannon VR, Anderson R, Blidner A, Choi J, Cooksley T, Dougan M, Glezerman I, Ginex P, Girotra M, Gupta D, Johnson DB, Suarez-Almazor ME, Rapoport BL. Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of immune-related adverse events: pulmonary toxicity. Support Care Cancer 2020; 28:6145-6157. [PMID: 32880733 PMCID: PMC7471521 DOI: 10.1007/s00520-020-05708-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
Abstract
The immune checkpoints associated with the CTLA-4 and PD-1 pathways are critical modulators of immune activation. These pathways dampen the immune response by providing brakes on activated T cells, thereby ensuring more uniform and controlled immune reactions and avoiding immune hyper-responsiveness and autoimmunity. Cancer cells often exploit these regulatory controls through a variety of immune subversion mechanisms, which facilitate immune escape and tumor survival. Immune checkpoint inhibitors (ICI) effectively block negative regulatory signals, thereby augmenting immune attack and tumor killing. This process is a double-edged sword in which release of regulatory controls is felt to be responsible for both the therapeutic efficacy of ICI therapy and the driver of immune-related adverse events (IrAEs). These adverse immune reactions are common, typically low-grade and may affect virtually every organ system. In the early clinical trials, lung IrAEs were rarely described. However, with ever-expanding clinical applications and more complex ICI-containing regimens, lung events, in particular, pneumonitis, have become increasingly recognized. ICI-related lung injury is clinically distinct from other types of lung toxicity and may lead to death in advanced stage disease. Thus, knowledge regarding the key characteristics and optimal treatment of lung-IrAEs is critical to good outcomes. This review provides an overview of lung-IrAEs, including risk factors and epidemiology, as well as clinical, radiologic, and histopathologic features of ICI-related lung injury. Management principles for ICI-related lung injury, including current consensus on steroid refractory pneumonitis and the use of other immune modulating agents in this setting are also highlighted.
Collapse
Affiliation(s)
- Vickie R. Shannon
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University or Pretoria, Corner Doctor Savage Road and Bophelo Road, Pretoria, 0002 South Africa
| | - Ada Blidner
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine-CONICET, Buenos Aires, Argentina
| | - Jennifer Choi
- Division of Oncodermatology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Tim Cooksley
- Manchester University Foundation Trust, Manchester, UK
- The Christie, University of Manchester, Manchester, UK
| | - Michael Dougan
- Massachusetts General Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Ilya Glezerman
- Renal Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | | | - Monica Girotra
- Endocrine Division, Department of Medicine, Weill Cornell Medical College (MG, AF), New York, NY USA
- Department of Medicine (DJB), Memorial Sloan-Kettering Cancer Center (MC), New York, NY USA
| | - Dipti Gupta
- Department of Medicine (DJB), Memorial Sloan-Kettering Cancer Center (MC), New York, NY USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN USA
| | - Maria E. Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University or Pretoria, Corner Doctor Savage Road and Bophelo Road, Pretoria, 0002 South Africa
- The Medical Oncology Centre of Rosebank, 129 Oxford Road, Saxonwold, Johannesburg, 2196 South Africa
| |
Collapse
|
16
|
Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Crit Rev Oncol Hematol 2020; 157:103164. [PMID: 33271388 DOI: 10.1016/j.critrevonc.2020.103164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Immune surveillance mechanisms comprising of adaptive and innate immune systems are naturally designed to eliminate AML development. However, leukemic cells apply various immune evasion mechanisms to deviate host immune responses resulting tumor progression. One of the recently well-known immune escape mechanisms is over-expression of immune checkpoint receptors and their ligands. Introduction of blocking antibodies targeting co-inhibitory molecules achieved invaluable success in tumor targeted therapy. Moreover, several new co-inhibitory pathways are currently studying for their potential impacts on improving anti-tumor immune responses. Although immunotherapeutic strategies based on the blockade of immune checkpoint molecules have shown promising results in a number of hematological malignances, their effectiveness in AML patients showed less remarkable success. This review discusses current knowledge about the involvement of co-inhibitory signaling pathways in immune evasion mechanisms of AML and potential application of immune checkpoint inhibitors for targeted immunotherapy of this malignancy.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Bewersdorf JP, Carraway H, Prebet T. Emerging treatment options for patients with high-risk myelodysplastic syndrome. Ther Adv Hematol 2020; 11:2040620720955006. [PMID: 33240476 PMCID: PMC7675905 DOI: 10.1177/2040620720955006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders
characterized by ineffective hematopoiesis with peripheral blood cytopenias,
dysplastic cell morphology, and a variable risk of progression to acute myeloid
leukemia (AML). The hypomethylating agents (HMA) azacitidine and decitabine have
been used for over a decade in MDS treatment and lead to a modest survival
benefit. However, response rates are only around 40% and responses are mostly
transient. For HMA-refractory patients the prognosis is poor and there are no
therapies approved by the United States Food and Drug Administration. Combinations of HMAs, especially along with immune checkpoint inhibitors, have
shown promising signals in both the frontline and HMA-refractory setting.
Several other novel agents including orally available and longer acting HMAs,
the BCL-2 inhibitor venetoclax, oral agents targeting driver mutations
(IDH1/2, FLT3), immunotherapies, and new options for
intensive chemotherapy have been studied with variable success and will be
reviewed herein. Except for the minority of patients with targetable driver
mutations, HMAs – likely as part of combination therapies – will remain the
backbone of frontline MDS treatment. However, the wider use of genetic testing
may enable a more targeted and individualized therapy of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Hetty Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 37 College Street, Room 101, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Bewersdorf JP, Zeidan AM. Randomized trials with checkpoint inhibitors in acute myeloid leukaemia and myelodysplastic syndromes: What have we learned so far and where are we heading? Best Pract Res Clin Haematol 2020; 33:101222. [PMID: 33279182 DOI: 10.1016/j.beha.2020.101222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
The treatment of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) has seen dramatic advances with the approval of multiple novel agents in recent years. However, unlike solid malignancies, immune checkpoint inhibitors have yet to garner regulatory approval in AML and MDS with recent randomized clinical trials yielding only underwhelming results. Novel targets have been explored in early phase clinical trials with impressive results leading to ongoing subsequent controlled trials. However, major challenges in the field remain such as the validation of predictive genetic, molecular, and immunophenotypic biomarkers, optimization of clinical trial design, and the identification of novel synergistic combination therapies. Herein, we review recent clinical trial data focusing on randomized clinical trials and highlight limitations of the currently available evidence in an effort to suggest options for advancing the field.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Bewersdorf JP, Zeidan AM. Following in the footsteps of acute myeloid leukemia: are we witnessing the start of a therapeutic revolution for higher-risk myelodysplastic syndromes? Leuk Lymphoma 2020; 61:2295-2312. [PMID: 32421403 PMCID: PMC7670856 DOI: 10.1080/10428194.2020.1761968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
For most patients with higher-risk myelodysplastic syndromes (HR-MDS) the hypomethylating agents (HMA) azacitidine and decitabine remain the mainstay of therapy. However, the prognosis mostly remains poor and aside from allogeneic hematopoietic stem cell transplantation no curative treatment options exist. Unlike acute myeloid leukemia, which has seen a dramatic expansion of available therapies recently, no new agents have been approved for MDS in the United States since 2006. However, various novel HMAs, HMA in combination with venetoclax, immune checkpoint inhibitors, and targeted therapies for genetically defined patient subgroups such as APR-246 or IDH inhibitors, have shown promising results in early stages of clinical testing. Furthermore, the wider availability of genetic testing is going to allow for a more individualized treatment of MDS patients. Herein, we review the current treatment approach for HR-MDS and discuss recent therapeutic advances and the implications of genetic testing on management of HR-MDS.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Bewersdorf JP, Zeidan AM. Management of higher risk myelodysplastic syndromes after hypomethylating agents failure: are we about to exit the black hole? Expert Rev Hematol 2020; 13:1131-1142. [DOI: 10.1080/17474086.2020.1819233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Immune checkpoint inhibition in myeloid malignancies: Moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev 2020; 45:100709. [PMID: 32487480 DOI: 10.1016/j.blre.2020.100709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICI) have yielded mixed but largely underwhelming results in clinical trials in patients with acute myeloid leukemia and myelodysplastic syndromes to date. However, increasing understanding of the immunologic landscape, potential biomarkers for benefits, and mechanisms of resistance, as well as the use of rational combinations, and identification of novel targets leaves plenty of room for optimism. Herein, we review recent advances in the preclinical and clinical development of ICI therapy in patients with myeloid malignancies and explore some of the important challenges facing the field such as the absence of validated biomarkers, the development of synergistic and safe combination therapies, and efforts to determine the best setting of ICI along the disease course. We finally foresee the future of the field and propose solutions to some of the major beforementioned obstacles.
Collapse
|
22
|
Shallis RM, Boddu PC, Bewersdorf JP, Zeidan AM. The golden age for patients in their golden years: The progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia. Blood Rev 2020; 40:100639. [DOI: 10.1016/j.blre.2019.100639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022]
|
23
|
Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol 2019; 188:147-158. [DOI: 10.1111/bjh.16310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. John Barrett
- GW Cancer Center George Washington University Hospital Washington DC USA
| |
Collapse
|
24
|
Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, Cavo M, Curti A. Chemotherapy-Induced Tumor Cell Death at the Crossroads Between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia. Front Oncol 2019; 9:1004. [PMID: 31649875 PMCID: PMC6794495 DOI: 10.3389/fonc.2019.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
In solid tumors and hematological malignancies, including acute myeloid leukemia, some chemotherapeutic agents, such as anthracyclines, have proven to activate an immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes. This process, known as immunogenic cell death, is characterized by a variety of tumor cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1 proteins. However, in addition to with immunogenic cell death, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1, which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells. The aim of this review is to summarize the current knowledge about the mechanisms and effects by which chemotherapy results in both activation and suppression of anti-tumor immune response. Indeed, a better understanding of the whole process underlying chemotherapy-induced alterations of the immunological tumor microenvironment has important clinical implications to fully exploit the immunogenic potential of anti-leukemia agents and tune their application.
Collapse
Affiliation(s)
- Darina Ocadlikova
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Mariangela Lecciso
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Sergio Amadori
- Department of Medicine, Institute of Hematology, University Hospital Tor Vergata, Rome, Italy
| | - Michele Cavo
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| |
Collapse
|
25
|
Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Front Pediatr 2019; 7:401. [PMID: 31681706 PMCID: PMC6803505 DOI: 10.3389/fped.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
This review aims to provide an overview of the current knowledge of the genetic lesions driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or exclusively occur in pediatric patients and molecular markers of aggressive disease with often poor outcome including fusion oncogenes that involve epigenetic regulators like KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS signal transduction pathways. We discuss the issues faced to faithfully model pediatric acute leukemia in mice. Emerging experimental evidence suggests that the disease phenotype is dependent on the appropriate expression and activity of the driver fusion oncogenes during a particular window of opportunity during fetal development. We also highlight biochemical studies that deciphered some molecular mechanisms of malignant transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances, allowed the development of small molecules with potent anti-leukemic activities in preclinical models (e.g., inhibitors of the KMT2A-MENIN interaction). Finally, we discuss other potential therapeutic strategies that not only target driver fusion-controlled signals but also interfere with the transformed cell state either by exploiting the primed apoptosis or vulnerable metabolic states or by increasing tumor cell recognition and elimination by the immune system.
Collapse
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, France
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital Beider Basel (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|