1
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
2
|
Tonk O, Tokgun PE, Yılmaz ÖS, Tokgun O, Inci K, Çelikkaya B, Altintas N. An In Vitro Study for the Role of Schizophrenia-Related Potential miRNAs in the Regulation of COMT Gene. Mol Neurobiol 2024; 61:7680-7690. [PMID: 38427212 PMCID: PMC11415445 DOI: 10.1007/s12035-024-04070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
This study aimed to analyze the possible association of miR-30a-5p, miR-30e-5p, and miR-34a-5p identified as potential candidate miRNAs in schizophrenia, with the COMT gene. Candidate miRNAs were obtained from the TargetScan database. The SH-SY5Y human neuroblastoma cell line was used as a cellular model for schizophrenia. miR-30a-5p, miR-30e-5p, and miR-34a-5p mimics were transfected into the SH-SY5Y cell line. Total RNA was isolated from transfected cells and RNA-IP samples and reverse transcripted for miRNA and mRNA analysis. RT-qPCR and western blot were performed to observe changes in expression levels of COMT. RNA-ımmunoprecipitation was performed to determine RNA-protein interactions after mimic transfection. In the study, it was observed that COMT gene expression levels decreased significantly after miR-30a-5p and miR-34a-5p expressions, whereas increased significantly as a result of miR-30e-5p transfection. RNA-IP data have shown that the amount of COMT pulled down by Ago2 was increased after miR-30a-5p and miR-34a-5p transfections. RNA-IP results revealed that miR-30a-5p and miR-34a-5p are direct targets for the COMT gene.
Collapse
Affiliation(s)
- Onur Tonk
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| | - Pervin Elvan Tokgun
- Faculty of Medicine, Department of Medical Genetics, Pamukkale University, Kınıklı, Denizli, Turkey.
| | - Özge Sarıca Yılmaz
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| | - Onur Tokgun
- Faculty of Medicine, Department of Medical Genetics, Pamukkale University, Kınıklı, Denizli, Turkey
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Büşra Çelikkaya
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Nuray Altintas
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| |
Collapse
|
3
|
Mukherjee A, Acharya PB, Singh A, Mukunthan KS. Identification of therapeutic
miRNAs
from the Arsenic induced gene expression profile of hepatocellular carcinoma. Chem Biol Drug Des 2022; 101:1027-1041. [PMID: 36052834 DOI: 10.1111/cbdd.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with a rising worldwide burden due to a lack of efficient treatment techniques and diagnosis after it has metastasized. Therefore, small non-coding RNA (miRNAs) as protein translation inhibitors are gaining attention that degrades or suppress specific gene transcripts, making it a prime strategy for oncogenes or tumor suppression. Systematic research with miRNAs in combination with Arsenic, which has been employed as a drug to treat several diseases, including cancer, was focused on cellular responses through interacting with multiple biological targets. The differential gene expression of the DNA microarray dataset (GSE48441) revealed the association of sterol, cholesterol, and lipid metabolic processes. With the aid of the network pharmacology approach, hsa-mir-335-5p was uncovered to negatively regulate the important nodes driving the transport and utilization of essential compounds for the rapid growth and proliferation of cancer cells. The binding energies of the duplexes were validated by the minimal free energies of the mRNAs for hsa-mir-335-5p, indicating energetically desirable binding association. The molecular interactions between hsa-mir-335-5p, which interacts with the Argonaute protein in the RNA induced silencing complex, and the target-specific genes were also investigated, revealing its susceptibility to be employed in in vitro studies.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | | | - Akshita Singh
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - K. S. Mukunthan
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| |
Collapse
|
4
|
Zheng H, Fu Q, Ma K, Shi S, Fu Y. Circ_0079558 promotes papillary thyroid cancer progression by binding to miR-26b-5p to activate MET/AKT signaling. Endocr J 2021; 68:1247-1266. [PMID: 34565758 DOI: 10.1507/endocrj.ej20-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of non-coding RNAs featured by covalently closed circular structure. CircRNA_0079558 (circ_0079558) is derived from RAPGEF5 gene, and it has been found to be significantly up-regulated in papillary thyroid carcinoma (PTC). However, the role and working mechanism of circ_0079558 in PTC progression have never been illustrated. The levels of circ_0079558 and MET proto-oncogene, receptor tyrosine kinase (MET) were up-regulated in PTC tissues and cell lines, as evidenced by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. The silencing of circ_0079558 or MET restrained cell proliferation, migration and invasion whereas triggered cell apoptosis in PTC cells, as verified by Cell Counting Kit-8 (CCK8) assay, plate colony formation assay, transwell invasion assay, wound healing assay and flow cytometry. Through using MET specific inhibitor PHA665752, we found that circ_0079558 overexpression enhanced the malignant behaviors of PTC cells through activating MET/AKT pathway. Through dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay, microRNA-26b-5p (miR-26b-5p) was identified to be the intermediary molecular between circ_0079558 and MET, and circ_0079558 knockdown reduced the expression of MET partly through elevating miR-26b-5p in PTC cells. The miR-198/FGFR1 pathway was identified as another signal axis downstream of circ_0079558, and the co-overexpression of FGFR1 and MET largely rescued the proliferation ability of circ_0079558-silenced PTC cells. Through xenograft tumor model, we found that circ_0079558 silencing restrained xenograft tumor growth in vivo. In conclusion, circ_0079558 facilitated the proliferation and motility whereas inhibited the apoptosis of PTC cells largely through mediating miR-26b-5p/MET/AKT signaling.
Collapse
Affiliation(s)
- Haibo Zheng
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfeng Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Kaili Ma
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Shuai Shi
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Yantao Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| |
Collapse
|
5
|
Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers (Basel) 2021; 13:1096. [PMID: 33806450 PMCID: PMC7961530 DOI: 10.3390/cancers13051096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.
Collapse
Affiliation(s)
- Ines Kozar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| |
Collapse
|
6
|
Zhao S, Xiong W, Xu K. MiR-663a, regulated by lncRNA GAS5, contributes to osteosarcoma development through targeting MYL9. Hum Exp Toxicol 2020; 39:1607-1618. [PMID: 32633150 DOI: 10.1177/0960327120937330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. MiR-663a has been reported in a variety of tumors to promote tumorigenesis. However, miR-663a has not been reported in the pathogenesis of osteosarcoma. Bioinformatics analysis and experiments including real-time quantitative polymerase chain reaction (RT-qPCR), luciferase reporter, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, RNA immunoprecipitation, and flow cytometry assay were applied to explore the function and mechanism of miR-663a in MG63, U2OS, Saos-2, SF-86, and hFOB1.19 cells. In this study, we found that miR-663a is highly expressed in osteosarcoma. At the same time, we discovered that miR-663a facilitates cell proliferation and migration, whereas suppresses cell apoptosis in osteosarcoma. Through a series of biological experiments, it was found that miR-663a regulates the cellular process in osteosarcoma by modulating the expression of MYL9. In addition, we also found that long noncoding RNA (lncRNA) GAS5 serves as a molecular sponge for miR-663a and regulates the progression of osteosarcoma via the ceRNA mechanism. We uncover that miR-663a promotes osteosarcoma development through targeting MYL9, which was regulated by lncRNA GAS5.
Collapse
Affiliation(s)
- S Zhao
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - W Xiong
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - K Xu
- Department of Orthopaedics, Ningbo Hwa Mei Hospital, 74519University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Li M, Li H, Chen Q, Wu W, Chen X, Ran L, Si G, Tan X. A Novel and Robust Long Noncoding RNA Panel to Predict the Prognosis of Pancreatic Cancer. DNA Cell Biol 2020; 39:1282-1289. [DOI: 10.1089/dna.2019.5241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mengying Li
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qi Chen
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Wenwen Wu
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Xuyu Chen
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Li Ran
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Guanglin Si
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Xiaodong Tan
- School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Wang J, Yu XF, Ouyang N, Zhao S, Yao H, Guan X, Tong J, Chen T, Li JX. MicroRNA and mRNA Interaction Network Regulates the Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cigarette Smoke. Front Oncol 2019; 9:1029. [PMID: 31649886 PMCID: PMC6794608 DOI: 10.3389/fonc.2019.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
This study analyzes the correlation and interaction of miRNAs and mRNAs and their biological function in the malignant transformation of BEAS-2B cells induced by cigarette smoke (CS). Normal human bronchial epithelial cells (BEAS-2B) were continuously exposed to CS for 30 passages (S30) to establish an in vitro cell model of malignant transformation. The transformed cells were validated by scratch wound healing assay, transwell migration assay, colony formation and tumorigenicity assay. The miRNA and mRNA sequencing analysis were performed to identify differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) between normal BEAS-2B and S30 cells. The miRNA-seq data of lung cancer with corresponding clinical data obtained from TCGA was used to further identify lung cancer-related DEMs and their correlations with smoking history. The target genes of these DEMs were predicted using the miRDB database, and their functions were analyzed using the online tool “Metascape.” It was found that the migration ability, colony formation rate and tumorigenicity of S30 cells enhanced. A total of 42 miRNAs and 753 mRNAs were dysregulated in S30 cells. The change of expression of top five DEGs and DEMs were consistent with our sequencing results. Among these DEMs, eight miRNAs were found dysregulated in lung cancer tissues based on TCGA data. In these eight miRNAs, six of them including miR-96-5p, miR-93-5p, miR-106-5p, miR-190a-5p, miR-195-5p, and miR-1-3p, were found to be associated with smoking history. Several DEGs, including THBS1, FN1, PIK3R1, CSF1, CORO2B, and PREX1, were involved in many biological processes by enrichment analysis of miRNA and mRNA interaction. We identified the negatively regulated miRNA-mRNA pairs in the CS-induced lung cancer, which were implicated in several cancer-related (especially EMT-related) biological process and KEGG pathways in the malignant transformation progress of lung cells induced by CS. Our result demonstrated the dysregulation of miRNA-mRNA profiles in cigarette smoke-induced malignant transformed cells, suggesting that these miRNAs might contribute to cigarette smoke-induced lung cancer. These genes may serve as biomarkers for predicting lung cancer pathogenesis and progression. They can also be targets of novel anticancer drug development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Nan Ouyang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shiyu Zhao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Haiping Yao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xifei Guan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jian-Xiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|