1
|
Lim HJ, Saha T, Tey BT, Tan WS, Hassan SS, Ooi CW. Quartz crystal microbalance-based biosensing of hepatitis B antigen using a molecularly imprinted polydopamine film. Talanta 2022; 249:123659. [PMID: 35728452 DOI: 10.1016/j.talanta.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Quartz crystal microbalance (QCM)-based biosensors are highly attractive as rapid diagnostic devices for detecting infectious diseases. However, the fabrication of QCM-based biosensors often involves tedious processes due to the poor stability of the biological recognition elements. In this work, the simple self-polymerisation of dopamine was used to functionalise the QCM crystal surface with a molecularly imprinted polydopamine (MIPDA) sensing film for detecting the hepatitis B core antigen (HBcAg), a serological biomarker of hepatitis B. Recognition cavities that complemented the size and shape of HBcAg were observed on the QCM crystal surface after functionalisation with the MIPDA film. The MIPDA-QCM biosensor showed a selective affinity for HBcAg, recording frequency responses up to 7.8 folds larger towards HBcAg compared to human serum albumin at the same analyte concentrations. The biosensor response was enhanced by using the optimal concentrations of 10 mg mL-1 of dopamine and 1 mg mL-1 of template for MIPDA film formation, resulting in a low detection limit (0.88 μg mL-1) that enables the detection of clinically relevant titres of HBcAg. The detection process could be completed within 10 min after sample loading without additional steps for signal amplification, highlighting the practical advantages of the MIPDA-QCM biosensor for point-of-care detection of hepatitis B.
Collapse
Affiliation(s)
- Hui Jean Lim
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Tridib Saha
- Electrical and Computer Systems Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Rong X, Ailing F, Xiaodong L, Jie H, Min L. Monitoring hepatitis B by using point-of-care testing: biomarkers, current technologies, and perspectives. Expert Rev Mol Diagn 2021; 21:195-211. [PMID: 33467927 DOI: 10.1080/14737159.2021.1876565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Liver diseases caused by hepatitis B virus (HBV) are pandemic infectious diseases that seriously endanger human health, conventional diagnosis methods can not meet the requirements in resource-limited areas. The point of acre detection methods can easily resolve those problems. Herein, we review the most recent advances in POC-based hepatitis B detection methods and present some recommendations for future development. It aims to provide ideas for future research.Areas covered: Epidemiological data on Hepatitis B, conventional diagnostic methods for hepatitis B detection, some latest point of care detection methods for hepatitis B detection and list out the recommendations for future development.Expert opinion: This manuscript summarized traditional biomarkers of different hepatitis B stages and recent-developed POCT platforms (including microfluidic platforms and lateral-flow strips) and discuss the challenges associated with their use. Some emerging biomarkers that can be used in hepatitis B diagnosis are also listed. This manuscript has certain guiding significance to the development of hepatitis B detection.
Collapse
Affiliation(s)
- Xu Rong
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Feng Ailing
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Li Xiaodong
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Hu Jie
- Suzhou DiYinAn Biotech Co., Ltd. & Suzhou Innovation Center for Life Science and Technology, Suzhou, China
| | - Lin Min
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Ong JR, Bamodu OA, Khang NV, Lin YK, Yeh CT, Lee WH, Cherng YG. SUMO-Activating Enzyme Subunit 1 (SAE1) Is a Promising Diagnostic Cancer Metabolism Biomarker of Hepatocellular Carcinoma. Cells 2021; 10:cells10010178. [PMID: 33477333 PMCID: PMC7830456 DOI: 10.3390/cells10010178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most diagnosed malignancies and a leading cause of cancer-related mortality globally. This is exacerbated by its highly aggressive phenotype, and limitation in early diagnosis and effective therapies. The SUMO-activating enzyme subunit 1 (SAE1) is a component of a heterodimeric small ubiquitin-related modifier that plays a vital role in SUMOylation, a post-translational modification involving in cellular events such as regulation of transcription, cell cycle and apoptosis. Reported overexpression of SAE1 in glioma in a stage-dependent manner suggests it has a probable role in cancer initiation and progression. In this study, hypothesizing that SAE1 is implicated in HCC metastatic phenotype and poor prognosis, we analyzed the expression of SAE1 in several cancer databases and to unravel the underlying molecular mechanism of SAE1-associated hepatocarcinogenesis. Here, we demonstrated that SAE1 is over-expressed in HCC samples compared to normal liver tissue, and this observed SAE1 overexpression is stage and grade-dependent and associated with poor survival. The receiver operating characteristic analysis of SAE1 in TCGA−LIHC patients (n = 421) showed an AUC of 0.925, indicating an excellent diagnostic value of SAE1 in HCC. Our protein-protein interaction analysis for SAE1 showed that SAE1 interacted with and activated oncogenes such as PLK1, CCNB1, CDK4 and CDK1, while simultaneously inhibiting tumor suppressors including PDK4, KLF9, FOXO1 and ALDH2. Immunohistochemical staining and clinicopathological correlate analysis of SAE1 in our TMU-SHH HCC cohort (n = 54) further validated the overexpression of SAE1 in cancerous liver tissues compared with ‘normal’ paracancerous tissue, and high SAE1 expression was strongly correlated with metastasis and disease progression. The oncogenic effect of upregulated SAE1 is associated with dysregulated cancer metabolic signaling. In conclusion, the present study demonstrates that SAE1 is a targetable cancer metabolic biomarker with high potential diagnostic and prognostic implications for patients with HCC.
Collapse
Affiliation(s)
- Jiann Ruey Ong
- Department of Emergency Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.R.O.); (N.V.K.)
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
- Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (O.A.B.); (N.V.K.); (Y.-K.L.); (C.-T.Y.)
| | - Nguyen Viet Khang
- Department of Emergency Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.R.O.); (N.V.K.)
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (O.A.B.); (N.V.K.); (Y.-K.L.); (C.-T.Y.)
| | - Yen-Kuang Lin
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (O.A.B.); (N.V.K.); (Y.-K.L.); (C.-T.Y.)
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (O.A.B.); (N.V.K.); (Y.-K.L.); (C.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-249-0088 (ext. 8885)
| |
Collapse
|
4
|
Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron 2020; 168:112513. [PMID: 32889395 PMCID: PMC7443316 DOI: 10.1016/j.bios.2020.112513] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases are the ever-present threats to public health and the global economy. Accurate and timely diagnosis is crucial to impede the progression of a disease and break the chain of transmission. Conventional diagnostic techniques are typically time-consuming and costly, making them inefficient for early diagnosis of infections and inconvenient for use at the point of care. Developments of sensitive, rapid, and affordable diagnostic methods are necessary to improve the clinical management of infectious diseases. Quartz crystal microbalance (QCM) systems have emerged as a robust biosensing platform due to their label-free mechanism, which allows the detection and quantification of a wide range of biomolecules. The high sensitivity and short detection time offered by QCM-based biosensors are attractive for the early detection of infections and the routine monitoring of disease progression. Herein, the strategies employed in QCM-based biosensors for the detection of infectious diseases are extensively reviewed, with a focus on prevalent diseases for which improved diagnostic techniques are in high demand. The challenges to the clinical application of QCM-based biosensors are highlighted, along with an outline of the future scope of research in QCM-based diagnostics.
Collapse
Affiliation(s)
- Hui Jean Lim
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Tridib Saha
- Electrical and Computer Systems Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
5
|
Liu HF, Wang Q, Du YN, Zhu ZH, Li YF, Zou LQ, Xing W. Dynamic contrast-enhanced MRI with Gd-EOB-DTPA for the quantitative assessment of early-stage liver fibrosis induced by carbon tetrachloride in rabbits. Magn Reson Imaging 2020; 70:57-63. [PMID: 32325235 DOI: 10.1016/j.mri.2020.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore quantitative parameters obtained by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) with Gd-EOB-DTPA in discriminating early-stage liver fibrosis (LF) in a rabbit model. MATERIALS AND METHODS LF was established in 60 rabbits by the injection of 50% CCl4 oil solution, whereas 30 rabbits served as the control group. All rabbits underwent pathological examination to determine the LF stage using the METAVIR classification system. DCE MRI was performed, and quantitative parameters, including Ktrans, Kep, Ve, Vp and Re were measured and evaluated among the different LF stages using spearman correlation coefficients and receiver operating characteristic curve. RESULTS In all, 24, 25, and 22 rabbits had stage F0, stage F1, and stage F2 LF, respectively. Ktrans (r = 0.803) increased, and Kep (r = -0.495) and Re (r = -0.701) decreased with LF stage progression (P < 0.001), while no significant correlation was found for Ve or Vp. Ktrans and Re were significantly different between all LF stage pairs compared (F0 vs. F1, F0 vs. F2, F1 vs. F2, F0 vs. F1-F2, P < 0.05). With the exception of F0 vs. F1, Kep differed significantly between stages (P < 0.05). The AUC of Ktrans was higher than that of other quantitative parameters, with an AUC of 0.92, 0.99, 0.94 and 0.92 for staging F0 vs. F1, F0 vs. F2, F1 vs. F2, and F0 vs. F1-F2, respectively. CONCLUSION Among quantitative parameters of Gd-EOB-DTPA DCE MRI, Ktrans was the best predictor for quantitatively differentiating early-stage LF.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| | - Ya-Nan Du
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| | - Zu-Hui Zhu
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| | - Yu-Feng Li
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| | - Li-Qiu Zou
- Department of Radiology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou 213003, Jiangsu, China
| |
Collapse
|
6
|
Yao M, Sai W, Zheng W, Wang L, Dong Z, Yao D. Secretory Clusterin as a Novel Molecular-targeted Therapy for Inhibiting Hepatocellular Carcinoma Growth. Curr Med Chem 2020; 27:3290-3301. [PMID: 31232234 DOI: 10.2174/0929867326666190624161158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although secretory clusterin (sCLU) plays a crucial role in Hepatocellular Carcinoma (HCC) cells proliferation, Multiple Drug Resistance (MDR), metastasis and so on, its targeted effects and exact mechanism are still unknown. This review summarizes some new progress in sCLU as a molecular-targeted therapy in the treatment of HCC. METHODS A systematic review of the published English-language literature about sCLU and HCC has been performed using the PubMed and bibliographic databases. Some valuable studies on sCLU in HCC progression were searched for relevant articles with the keywords: HCC, diagnosis, MDR, as molecular-targeted in treatment, and so on. RESULTS The incidence of the positive rate of sCLU was significantly higher in HCC tissues as compared to the surrounding tissues at mRNA or protein level, gradually increasing with tumor-nodemetastasis staging (P<0.05). Also, the abnormal level of sCLU was related to poor differentiation degree, and considered as a useful marker for HCC diagnosis or independent prognosis for patients. Hepatic sCLU could be silenced at mRNA level by specific sCLU-shRNA or by OGX-011 to inhibit cancer cell proliferation with an increase in apoptosis, cell cycle arrest, reversal MDR, alteration of cell migration or invasion behaviors, and a decrease in GSK-3β or AKT phosphorylation in vitro, as well as significant suppression of the xenograft growth by down-regulating β-catenin, p-GSK3β, and cyclinD1 expression in vivo. CONCLUSION Abnormal hepatic sCLU expression should not only be a new diagnostic biomarker but also a novel promising target for inhibiting HCC growth.
Collapse
Affiliation(s)
- Min Yao
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhizhen Dong
- Department of Diagnostics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dengfu Yao
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|