1
|
Zheng S, Cheng X, Ke S, Zhang L, Wu H, He D, Cheng X. Bioinformatics analysis and validation of mesenchymal stem cells related gene MT1G in osteosarcoma. Aging (Albany NY) 2024; 16:8155-8170. [PMID: 38747739 PMCID: PMC11131992 DOI: 10.18632/aging.205809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.
Collapse
Affiliation(s)
- Sikuan Zheng
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical College, Medical College of Nanchang University, Nanchang, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Sulun Ke
- Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, China
| | - Linyi Zhang
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Hui Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical College, Medical College of Nanchang University, Nanchang, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, China
| | - Dingwen He
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, China
| | - Xigao Cheng
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, China
| |
Collapse
|
2
|
Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA, lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res 2023; 28:354. [PMID: 37717007 PMCID: PMC10504747 DOI: 10.1186/s40001-023-01309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/23/2023] [Indexed: 09/18/2023] Open
Abstract
Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Yuting Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiaotong University, Wujin Road No. 85, Shanghai, 200080, China.
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China.
| |
Collapse
|
3
|
Jin Z, Ye J, Chen S, Ren Y, Guo W. CircDOCK1 Regulates miR-186/DNMT3A to Promote Osteosarcoma Progression. Biomedicines 2022; 10:biomedicines10123013. [PMID: 36551768 PMCID: PMC9775081 DOI: 10.3390/biomedicines10123013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), as a class of endogenous RNAs, are implicated in osteosarcoma (OS) progression. However, the functional properties of circDOCK1 in OS have been largely unexplored. The present study demonstrated the regulatory mechanism of circDOCK1 in OS. METHODS QRT-PCR and Western blots were used to determine the abundances of circDOCK1, miR-186, and DNMT3A. Cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, Transwell, and wound healing assays were used to examine cellular multiplication, motility, and invasion. Luciferase reporter analysis, RNA immunoprecipitation (RIP), and pull-down assays were used to verify target relationships. Xenograft models were used to analyze in vivo function. RESULTS OS tissues and cells showed high levels of circDOCK1. By knocking down circDOCK1, cellular multiplication, motility, and invasion were suppressed. Furthermore, silencing circDOCK1 suppressed the growth of tumor xenografts. According to mechanistic studies, miR-186 targets DNA methyltransferases 3A (DNMT3A) directly and acts as a circDOCK1 target. Furthermore, circDOCK1 upregulated DNMT3A expression through sponging miR-186 to regulate the progression of OS. CONCLUSIONS CircDOCK1 promotes OS progression by interacting with miR-186/DNMT3ADNMT3A, representing a novel therapeutic approach.
Collapse
Affiliation(s)
| | | | | | | | - Weichun Guo
- Correspondence: ; Tel.: +86-027-88041911-82209
| |
Collapse
|
4
|
Nguyen JC, Baghdadi S, Pogoriler J, Guariento A, Rajapakse CS, Arkader A. Pediatric Osteosarcoma: Correlation of Imaging Findings with Histopathologic Features, Treatment, and Outcome. Radiographics 2022; 42:1196-1213. [PMID: 35594197 DOI: 10.1148/rg.210171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteosarcoma is the most common primary bone sarcoma in children. Imaging plays a pivotal role in diagnostic workup, surgical planning, and follow-up monitoring for possible disease relapse. Survival depends on multiple factors, including presence or absence of metastatic disease, chemotherapy response, and surgical margins. At diagnosis, radiography and anatomic MRI are used to characterize the primary site of disease, whereas chest CT and whole-body bone scintigraphy and/or PET are used to identify additional sites of disease. Treatment starts with neoadjuvant chemotherapy, followed by en bloc tumor resection and limb reconstruction, and finally, adjuvant chemotherapy. Preoperative planning requires precise tumor delineation, which traditionally has been based on high-spatial-resolution anatomic MRI to identify tumor margins (medullary and extraosseous), skip lesions, neurovascular involvement, and joint invasion. These findings direct the surgical approach and affect the options for reconstruction. For skeletally immature children, the risk of cumulative limb-length discrepancy and need for superior longevity of the reconstruction have led to the advent and preferential use of several pediatric-specific surgical techniques, including rotationplasty, joint preservation surgery, autograft or allograft reconstruction, and extendible endoprostheses. A better understanding of the clinically impactful imaging features can directly and positively influence patient care. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Jie C Nguyen
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| | - Soroush Baghdadi
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| | - Jennifer Pogoriler
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| | - Andressa Guariento
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| | - Chamith S Rajapakse
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| | - Alexandre Arkader
- From the Department of Radiology (J.C.N., A.G.), Division of Orthopaedic Surgery (S.B., A.A.), and Department of Pathology and Laboratory Medicine (J.P.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104; and Department of Radiology (C.S.R.), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.C.N., J.P., A.A.)
| |
Collapse
|
5
|
Liu D, Cheng Y, Qiao S, Liu M, Ji Q, Zhang BL, Mei QB, Zhou S. Nano-Codelivery of Temozolomide and siPD-L1 to Reprogram the Drug-Resistant and Immunosuppressive Microenvironment in Orthotopic Glioblastoma. ACS NANO 2022; 16:7409-7427. [PMID: 35549164 DOI: 10.1021/acsnano.1c09794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is an invasive cancer with high mortality in central nervous system. Resistance to temozolomide (TMZ) and immunosuppressive microenvironment lead to low outcome of the standardized treatment for GBM. In this study, a 2-deoxy-d-glucose modified lipid polymer nanoparticle loaded with TMZ and siPD-L1 (TMZ/siPD-L1@GLPN/dsb) was prepared to reprogram the TMZ-resistant and immunosuppressive microenvironment in orthotopic GBM. TMZ/siPD-L1@GLPN/dsb simultaneously delivered a large amount of TMZ and siPD-L1 to the deep area of the orthotopic TMZ-resistant GBM tissue. By inhibiting PD-L1 protein expression, TMZ/siPD-L1@GLPN/dsb markedly augmented the percentage of CD3+CD8+IFN-γ+ cells (Teff cells) and reduced the percentage of CD4+CD25+FoxP3+ cells (Treg cells) in orthotopic TMZ-resistant GBM tissue, which enhanced T-cell mediated cytotoxicity on orthotopic TMZ-resistant GBM. Moreover, TMZ/siPD-L1@GLPN/dsb obviously augmented the sensitivity of orthotopic TMZ-resistant GBM to TMZ through decreasing the protein expression of O6-methyl-guanine-DNA methyltransferase (MGMT) in TMZ-resistant GBM cells. Thus, TMZ/siPD-L1@GLPN/dsb markedly restrained the growth of orthotopic TMZ-resistant GBM and extended the survival time of orthotopic GBM rats through reversing a TMZ-resistant and immunosuppressive microenvironment. TMZ/siPD-L1@GLPN/dsb shows potential application to treat orthotopic TMZ-resistant GBM.
Collapse
Affiliation(s)
- Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Sai Qiao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Sun X, Zheng D, Guo W. Comprehensive Analysis of a Zinc Finger Protein Gene–Based Signature with Regard to Prognosis and Tumor Immune Microenvironment in Osteosarcoma. Front Genet 2022; 13:835014. [PMID: 35281811 PMCID: PMC8914066 DOI: 10.3389/fgene.2022.835014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor that seriously threatens the lives of teenagers and children. Zinc finger (ZNF) protein genes encode the largest transcription factor family in the human genome. Aberrant expressions of ZNF protein genes widely occur in osteosarcoma, and these genes are therefore attractive biomarker candidates for prognosis prediction. In this study, we conducted a comprehensive analysis of ZNF protein genes in osteosarcoma and identified prognosis-related ZNF protein genes. Then, we constructed a prognostic signature based on seven prognosis-related ZNF protein genes and stratified patients into high- and low-risk groups. The seven genes included MKRN3, ZNF71, ZNF438, ZNF597, ATMIN, ZNF692, and ZNF525. After validation of the prognostic signature in internal and external cohorts, we constructed a nomogram including clinical features such as sex and age and the relative risk score based on the risk signature. Functional enrichment analysis of the risk-related differentially expressed genes revealed that the prognostic signature was closely associated with immune-related biological processes and signaling pathways. Moreover, we found significant differences between the high- and low-risk groups for the scores of diverse immune cell subpopulations, including CD8+ T cells, neutrophils, Th1 cells, and TILs. Regarding immune function, APC co-inhibition, HLA, inflammation promotion, para-inflammation, T-cell co-inhibition, and the type I IFN response were significantly different between the high- and low-risk groups. Of the seven ZNF protein genes, lower expressions of ATMIN, MKRN3, ZNF71, ZNF438, and ZNF597 were correlated with a high risk, while higher expressions of ZNF525 and ZNF692 were associated with a high risk. The Kaplan–Meier survival analysis suggested that lower expressions of ATMIN, ZNF438, and ZNF597 and the higher expression of ZNF692 were associated with worse overall survival in osteosarcoma. In conclusion, our ZNF protein gene–based signature was a novel and clinically useful prognostic biomarker for osteosarcoma patients.
Collapse
|
7
|
Namløs HM, Skårn M, Ahmed D, Grad I, Andresen K, Kresse SH, Munthe E, Serra M, Scotlandi K, Llombart-Bosch A, Myklebost O, Lind GE, Meza-Zepeda LA. miR-486-5p expression is regulated by DNA methylation in osteosarcoma. BMC Genomics 2022; 23:142. [PMID: 35172717 PMCID: PMC8851731 DOI: 10.1186/s12864-022-08346-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has been shown to be downregulated in osteosarcoma and in cancer in general. Results To investigate if the mir-486 locus is epigenetically regulated, we integrated DNA methylation and miR-486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. A CpG island in the promoter of the ANK1 host gene of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient samples, xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2′-deoxycytidine treatment of osteosarcoma cell lines caused induction of miR-486-5p and ANK1, indicating common epigenetic regulation in osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology. Conclusions miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma, and this knowledge contributes to the understanding of osteosarcoma biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08346-6.
Collapse
Affiliation(s)
- Heidi M Namløs
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Magne Skårn
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Deeqa Ahmed
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Iwona Grad
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kim Andresen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Stine H Kresse
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Munthe
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
9
|
Yiqi Z, Ziyun L, Qin F, Xingli W, Liyu Y. Identification of 9-Gene Epithelial-Mesenchymal Transition Related Signature of Osteosarcoma by Integrating Multi Cohorts. Technol Cancer Res Treat 2020; 19:1533033820980769. [PMID: 33308057 PMCID: PMC7739092 DOI: 10.1177/1533033820980769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prognosis of patients with osteosarcoma is still poor due to the lack of effective prognostic markers. The EMT (epithelial-mesenchymal transition) serves as a promoter in the progression of osteosarcoma. This study systematically analyzed EMT-related genes to explore new markers for predicting the prognosis of osteosarcoma. METHODS RNA-Seq data and clinical information were obtained from the GEO database; GSVA and GSEA analysis were used to enrich pathways related to osteosarcoma progression; LASSO method analysis was used to construct the prognosis risk signature. The "Nomogram" package generated the risk prediction nomogram, and its clinical applicability was evaluated by decision curve analysis (DCA). RESULTS GSVA and GSEA analysis showed that the EMT signaling pathway was closely related to osteosarcoma progression. A 9-genes signature (LAMA3, LGALS1, SGCG, VEGFA, WNT5A, MATN3, ANPEP, FUCA1, and FLNA) was constructed. The overall survival (OS) of the high-risk scores group was significantly lower than the low-risk scores group. The 9-gene signature demonstrated good predictive accuracy. Cox regression analysis showed that the 9-gene signature provided independent prognostic factors for osteosarcoma patients. In addition, the predictive nomogram model could effectively predict the prognosis of osteosarcoma patients. CONCLUSION This study constructed a 9-gene signature as a new prognostic marker to predict osteosarcoma patients' survival.
Collapse
Affiliation(s)
- Zhang Yiqi
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Liu Ziyun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fu Qin
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wang Xingli
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning, People's Republic of China
| | - Yang Liyu
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
10
|
Godel M, Morena D, Ananthanarayanan P, Buondonno I, Ferrero G, Hattinger CM, Di Nicolantonio F, Serra M, Taulli R, Cordero F, Riganti C, Kopecka J. Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma. Int J Mol Sci 2020; 21:ijms21124500. [PMID: 32599901 PMCID: PMC7349977 DOI: 10.3390/ijms21124500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.
Collapse
Affiliation(s)
- Martina Godel
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Deborah Morena
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Preeta Ananthanarayanan
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Ilaria Buondonno
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Giulio Ferrero
- Department of Computer Science, University of Torino, 10149 Torino, Italy; (G.F.); (F.C.)
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Claudia M. Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.M.H.); (M.S.)
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.M.H.); (M.S.)
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Francesca Cordero
- Department of Computer Science, University of Torino, 10149 Torino, Italy; (G.F.); (F.C.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Correspondence: (C.R.); (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Correspondence: (C.R.); (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.)
| |
Collapse
|
11
|
Four genes predict the survival of osteosarcoma patients based on TARGET database. J Bioenerg Biomembr 2020; 52:291-299. [PMID: 32514876 DOI: 10.1007/s10863-020-09836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022]
Abstract
Osteosarcoma represents one of the most aggressive tumors of bone among adolescents and young adults. Despite improvements in treatment, osteosarcoma has a grave prognosis. The identification of prognostic factors is still in its infancy. Weighted gene correlation network analysis (WGCNA) was conducted on mRNA-sequencing and clinical information (gender, survival and metastasis) of osteosarcoma patients from the TARGET database to obtain genes in modules associated with metastasis of osteosarcoma. The Cox regression analysis was then performed on the gene expression profile from TARGET to screen genes associated with patients' survival. Known genes related to osteosarcoma were obtained by intersecting osteosarcoma-related genes from DisGeNET and DiGSeE, followed by the construction of PPI network of osteosarcoma-related genes and survival-related genes in modules. The screened key genes were subject to multi-factor Cox proportional hazards model, and osteosarcoma patients were classified into high- and low- risk groups according to the risk score to evaluate the potential of key genes to predict the survival of osteosarcoma patients. The WGCNA showed that 4 genes in tan and 19 genes in pink modules were related to the survival of osteosarcoma patients. Osteosarcoma-related known genes (9) were obtained in intersection of DisGeNET and DiGSeE. PPI network identified 4 key genes (KRT5, HIPK2, MAP3K5 and CD5) closely associated with survival of osteosarcoma patients. HIPK2, MAP3K5 and CD5 expression was inversely correlated with survival risk, while KRT5 expression was positively correlated with survival risk. These results show KRT5, HIPK2, MAP3K5 and CD5 serve as prognostic factors of osteosarcoma patients.
Collapse
|
12
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
13
|
Hattinger CM, Patrizio MP, Magagnoli F, Luppi S, Serra M. An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin Emerg Drugs 2019; 24:153-171. [PMID: 31401903 DOI: 10.1080/14728214.2019.1654455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|