1
|
Wang Y, Chen X, Chen Q, Liu T, Wu Y, Huang L, Chen Y. Expression of human dCTP pyrophosphatase 1 (DCTPP1) and its association with cisplatin resistance characteristics in ovarian cancer. J Cell Mol Med 2024; 28:e18371. [PMID: 38686496 PMCID: PMC11058668 DOI: 10.1111/jcmm.18371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Cisplatin (DDP) resistance is a major challenge in treating ovarian cancer patients. A recently discovered enzyme called dCTP pyrophosphatase 1 (DCTPP1) has been implicated in regulating cancer characteristics, including drug responses. In this study, we aimed to understand the role of DCTPP1 in cancer progression and cisplatin response. Using publicly available databases, we analysed the expression and clinical significance of DCTPP1 in ovarian cancer. Our bioinformatics analysis confirmed that DCTPP1 is significantly overexpressed in ovarian cancer and is closely associated with tumour progression and poor prognosis after cisplatin treatment. We also found that DCTPP1 located in oxidoreductase complex and may be involved in various biological processes related to cisplatin resistance, including pyrimidine nucleotide metabolism, the P53 signalling pathway and cell cycle signalling pathways. We observed higher expression of DCTPP1 in cisplatin-resistant cells (SKOV3/DDP) and samples compared to their sensitive counterparts. Additionally, we found that DCTPP1 expression was only enhanced in SKOV3/S cells when treated with cisplatin, indicating different expression patterns of DCTPP1 in cisplatin-sensitive and cisplatin-resistant cancer cells. Our study further supports the notion that cisplatin induces intracellular reactive oxygen species (ROS) and triggers cancer cell death through excessive oxidative stress. Knocking out DCTPP1 reversed the drug resistance of ovarian cancer cells by enhancing the intracellular antioxidant stress response and accumulating ROS. Based on our research findings, we conclude that DCTPP1 has prognostic value for ovarian cancer patients, and targeting DCTPP1 may be clinically significant in overcoming cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yu Wang
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xiangyun Chen
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Qiduan Chen
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tiancai Liu
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yingsong Wu
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Liping Huang
- Obstetrics and Gynecology center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yao Chen
- School of medical laboratory and BiotechnologySouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Li R, Xiong Z, Ma Y, Li Y, Yang Y, Ma S, Ha C. Enhancing precision medicine: a nomogram for predicting platinum resistance in epithelial ovarian cancer. World J Surg Oncol 2024; 22:81. [PMID: 38509620 PMCID: PMC10956367 DOI: 10.1186/s12957-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND This study aimed to develop a novel nomogram that can accurately estimate platinum resistance to enhance precision medicine in epithelial ovarian cancer(EOC). METHODS EOC patients who received primary therapy at the General Hospital of Ningxia Medical University between January 31, 2019, and June 30, 2021 were included. The LASSO analysis was utilized to screen the variables which contained clinical features and platinum-resistance gene immunohistochemistry scores. A nomogram was created after the logistic regression analysis to develop the prediction model. The consistency index (C-index), calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to assess the nomogram's performance. RESULTS The logistic regression analysis created a prediction model based on 11 factors filtered down by LASSO regression. As predictors, the immunohistochemical scores of CXLC1, CXCL2, IL6, ABCC1, LRP, BCL2, vascular tumor thrombus, ascites cancer cells, maximum tumor diameter, neoadjuvant chemotherapy, and HE4 were employed. The C-index of the nomogram was found to be 0.975. The nomogram's specificity is 95.35% and its sensitivity, with a cut-off value of 165.6, is 92.59%, as seen by the ROC curve. After the nomogram was externally validated in the test cohort, the coincidence rate was determined to be 84%, and the ROC curve indicated that the nomogram's AUC was 0.949. CONCLUSION A nomogram containing clinical characteristics and platinum gene IHC scores was developed and validated to predict the risk of EOC platinum resistance.
Collapse
Affiliation(s)
- Ruyue Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhuo Xiong
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Department of Gynecologic Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yuan Ma
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yongmei Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yu'e Yang
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shaohan Ma
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
- Department of Gynecologic Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
- Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, Key Laboratory of Fertility Preservation and Maintenance of Ningxia Medical University and Ministry of Education of China, Department of Histology and Embryology in, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| |
Collapse
|
3
|
Fan Q, Li L, Wang TL, Emerson RE, Xu Y. A Novel ZIP4-HDAC4-VEGFA Axis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13153821. [PMID: 34359722 PMCID: PMC8345154 DOI: 10.3390/cancers13153821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Despite tremendous research efforts, epithelial ovarian cancer (EOC) remains one of the most difficult cancers to detect early and treat successfully for >5-year survival. We have recently shown that ZIP4, a zinc transporter, is a novel cancer stem cell (CSC) marker and a therapeutic target for EOC. The current work focuses on developing new strategies to target ZIP4 and inhibit its CSC activities in EOC. We found that cells expressing high levels of ZIP4 were supersensitive to a group of inhibitors called HDACis. One of the major targets of these inhibitors is a protein called HDAC4. We revealed the new molecular bases for the ZIP4-HDAC4 axis and tested the efficacies of targeting this axis in the lab and in mouse models. Our study provides a new mechanistic-based targeting strategy for EOC. Abstract We have recently identified ZIP4 as a novel cancer stem cell (CSC) marker in high-grade serous ovarian cancer (HGSOC). While it converts drug-resistance to cisplatin (CDDP), we unexpectedly found that ZIP4 induced sensitization of HGSOC cells to histone deacetylase inhibitors (HDACis). Mechanistically, ZIP4 selectively upregulated HDAC IIa HDACs, with little or no effect on HDACs in other classes. HDAC4 knockdown (KD) and LMK-235 inhibited spheroid formation in vitro and tumorigenesis in vivo, with hypoxia inducible factor-1 alpha (HIF1α) and endothelial growth factor A (VEGFA) as functional downstream mediators of HDAC4. Moreover, we found that ZIP4, HDAC4, and HIF1α were involved in regulating secreted VEGFA in HGSOC cells. Furthermore, we tested our hypothesis that co-targeting CSC via the ZIP4-HDAC4 axis and non-CSC using CDDP is necessary and highly effective by comparing the effects of ZIP4-knockout/KD, HDAC4-KD, and HDACis, in the presence or absence of CDDP on tumorigenesis in mouse models. Our results showed that the co-targeting strategy was highly effective. Finally, data from human HGSOC tissues showed that ZIP4 and HDAC4 were upregulated in a subset of recurrent tumors, justifying the clinical relevance of the study. In summary, our study provides a new mechanistic-based targeting strategy for HGSOC.
Collapse
Affiliation(s)
- Qipeng Fan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
| | - Lihong Li
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 600 North Wolfe St., Baltimore, MD 21287, USA;
| | - Tian-Li Wang
- Department of Gynecology, Oncology, and Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, MD 21231, USA;
| | - Robert E. Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana University Health Pathology Laboratory, 350 W. 11th Street, Room 4010, Indianapolis, IN 46202, USA;
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut St. R2-E380, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-(317)-274-3972
| |
Collapse
|
4
|
Sun X, Liu Q, Huang J, Diao G, Liang Z. Transcriptome-based stemness indices analysis reveals platinum-based chemo-theraputic response indicators in advanced-stage serous ovarian cancer. Bioengineered 2021; 12:3753-3771. [PMID: 34266348 PMCID: PMC8806806 DOI: 10.1080/21655979.2021.1939514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer (SOC) is a main histological subtype of ovarian cancer, in which cancer stem cells (CSC) are responsible for its chemoresistance. However, the underlying modulation mechanisms of chemoresistance led by cancer stemness are still undefined. We aimed to investigate potential drug-response indicators among stemness-associated biomarkers in advanced SOC samples. The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas (TCGA) was evaluated and corrected by tumor purity. Weighted gene co-expression network analysis (WGCNA) was utilized to explore the gene modules and key genes involved in stemness characteristics. We found that mRNAsi and corrected mRNAsi scores were both greater in tumors of Grade 3 and 4 than that of Grade 1 and 2. Forty-two key genes were obtained from the most significant mRNAsi-related gene module. Functional annotation revealed that these key genes were mainly involved in the mitotic division. Thirteen potential platinum-response indicators were selected from the genes enriched to platinum-response associated pathways. Among them, we identified 11 genes with prognostic value of progression-free survival (PFS) in advanced SOC patients treated with platinum and 7 prognostic genes in patients treated with a combination of platinum and taxol. The expressions of the 13 key genes were also validated between platinum-resistant and -sensitive SOC samples of advanced stages in two Gene Expression Omnibus (GEO) datasets. The results revealed that CDC20 was a potential platinum-sensitivity indicator in advanced SOC. These findings may provide a new insight for chemotherapies in advanced SOC patients clinically.
Collapse
Affiliation(s)
- Xinwei Sun
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingyu Liu
- Orthopedic Department, The 964th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Changchun, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Deo A, Mukherjee S, Rekhi B, Ray P. Subtype specific biomarkers associated with chemoresistance in epithelial ovarian cancer. INDIAN J PATHOL MICR 2020; 63:S64-S69. [PMID: 32108633 DOI: 10.4103/ijpm.ijpm_872_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In spite of the advent of many high throughput technologies, tumor tissue biomarkers are still the gold standard for diagnosis and prognosis of different malignancies including epithelial ovarian cancer (EOC). EOC is a heterogeneous disease comprised of five major subtypes which show distinct clinicopathological features and therapy response. Acquirement of chemoresistance toward therapy is a major challenge for successful treatment outcome in EOC patients. Several markers have been tested by immunohistochemical method to evaluate their prognostic merit to predict clinical outcome. However, a vast majority of such markers have been assessed for high-grade serous and clear cell ovarian cancer, among all subtypes of EOC. The current review elaborates upon those biomarkers that can potentially predict chemoresistance with subtype specificity.
Collapse
Affiliation(s)
- Abhilash Deo
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai; Homi Bhabha National Institute, Anushakti Nagar, Maharashtra, India
| | - Souvik Mukherjee
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai; Homi Bhabha National Institute, Anushakti Nagar, Maharashtra, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar; Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, India
| | - Pritha Ray
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai; Homi Bhabha National Institute, Anushakti Nagar, Maharashtra, India
| |
Collapse
|
6
|
Sato C, Osakabe M, Nagasawa T, Suzuki H, Itamochi H, Baba T, Sugai T. Genome-wide analysis of microRNA to evaluate prognostic markers in isolated cancer glands and surrounding stroma in high-grade serous ovarian carcinoma. Oncol Lett 2020; 20:338. [PMID: 33123249 PMCID: PMC7583725 DOI: 10.3892/ol.2020.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/03/2020] [Indexed: 12/09/2022] Open
Abstract
The molecular mechanisms responsible for the progression of ovarian cancer remain incompletely understood. By targeting multiple cancer-related genes, microRNAs (miRNAs) have been identified as key regulators of cancer development and progression. In addition, the microenvironment, which constitutes cancer glands and the surrounding stromal tissue at the invasive front, has an important role in cancer progression. Using array-based analysis of 14 cases (cohort 1), the aim of the present study was to evaluate global miRNA expression in cancerous glands and surrounding stromal tissues (isolated using a crypt isolation method), in order to identify potential prognostic markers of high-grade serous carcinoma (HGSC). Reverse transcription-quantitative PCR was also used to verify the results in cohort 1 (14 cases) and in 16 additional HGSC cases (cohort 2; verification cohort). Firstly, miRNA expression levels were compared between HGSC and normal samples among both the isolated cancer gland and stromal tissue samples. Secondly, miRNA expression was compared between HGSC cases with recurrence and those without recurrence among the isolated cancer gland and stromal tissue samples. The results revealed six and seven miRNAs identified in both of the aforementioned comparisons in isolated cancer glands and surrounding stromal tissue, respectively. Furthermore, downregulation of miRNA-214-3p in isolated cancer glands and downregulation of miRNA-320c in the corresponding stromal tissue were associated with a decrease in disease-free survival (without recurrence) in cohort 2. These findings indicated that specific miRNAs expressed in cancer cells and surrounding stromal cells of HGSC may be potential biomarkers predicting patient prognosis.
Collapse
Affiliation(s)
- Chie Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Takayuki Nagasawa
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| |
Collapse
|
7
|
Ma S, Zheng Y, Fei C. Identification of key factors associated with early- and late-onset ovarian serous cystadenocarcinoma. Future Oncol 2020; 16:2821-2833. [PMID: 32885674 DOI: 10.2217/fon-2020-0668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To uncover the molecular mechanisms of early-onset ovarian serous cystadenocarcinoma (EOOSC; patients <50 years old) and late-onset ovarian serous cystadenocarcinoma (LOOSC; patients ≥50 years old). Materials & methods: Bioinformatics was utilized to identify the key factors. Results: 478 EOOSC and 899 LOOSC individual differentially expressed genes were identified and enriched in different pathways. The expression of key genes LAG3, LRRC63 and MT1B significantly influenced the overall survival of EOOSC patients. The expression of key genes RDH12, NTSR1, ZSCAN16, CT45A3 and EPPIN_WFDC6 significantly affected the overall survival of LOOSC patients. Conclusions: The molecular mechanisms of EOOSC and LOOSC appear to be different, so that patients might be treated individually in respect of age.
Collapse
Affiliation(s)
- Shuang Ma
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yang Zheng
- Genenexus Technology Corporation, Shanghai, 200438, PR China
| | - Chengwei Fei
- Department of Aeronautics & Astronautics, Fudan University, Shanghai, 200433, PR China
| |
Collapse
|
8
|
Brunetti M, Panagopoulos I, Kostolomov I, Davidson B, Heim S, Micci F. Mutation analysis and genomic imbalances of cells found in effusion fluids from patients with ovarian cancer. Oncol Lett 2020; 20:2273-2279. [PMID: 32782545 PMCID: PMC7400987 DOI: 10.3892/ol.2020.11782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian carcinomas and carcinosarcomas often cause malignant effusions, an accumulation within serous cavities of fluid containing cancer cells. Few studies have focused on the molecular alterations and genetic mechanisms behind effusion formation. The present study investigated the mutation status of TP53, PIK3CA, KRAS, HRAS, NRAS and BRAF in effusion fluids from 103 patients with ovarian cancer. In addition, array Comparative Genomic Hybridization (aCGH) analysis was performed on 20 effusions from patients with high-grade serous carcinoma (10 cases positive for TP53 mutation and 10 with TP53 wild-type). TP53 mutations, two of which were novel: c.826_830delCCTGT and c.475_476GC>TT, were identified in 44% of the cases. Mutations in KRAS, HRAS, and PIK3CA were identified in two, two and four cases, respectively. None of the effusions analysed showed NRAS or BRAF mutations. The aCGH analysis revealed highly imbalanced genomes similar to those described in primary ovarian carcinomas. No specific profile was indicated to distinguish tumors with TP53 mutations from those without. The molecular profiling of cells found in effusion fluids from patients with ovarian cancer thus showed considerable molecular heterogeneity. TP53 seems to be the most frequently mutated gene in these cells and may serve a leading role in the metastatic process.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Ilyá Kostolomov
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
9
|
Role of the Exosome Secretion Machinery in Ovarian Carcinoma: In Vitro and In Vivo Models. JOURNAL OF ONCOLOGY 2020. [DOI: 10.1155/2020/4291827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective. We recently reported on the expression and clinical role of molecules that mediate exosome secretion in high-grade serous carcinoma. In the present study, the biological role of these molecules was analyzed. Methods. OVCAR8 and ES-2 ovarian carcinoma cells were studied using a combination of CRISPR/Cas9 technology and two 3D in vitro models—spheroids emulating effusions and alginate scaffolds representing solid lesions. Isolation of exosomes was validated by electron microscopy. TSAP6, NSMASE2, RAB27A, and RAB27B mRNA and protein levels were analyzed using qRT-PCR and Western blotting, respectively. Tumor aggressiveness was studied in vitro using scratch assay, invasion assay, and matrix metalloproteinase (MMP) activity assay and in vivo using a mouse model. Results. In OVCAR8 cells, mRNA expression of TSAP6 and RAB27A was significantly higher in spheroids compared to scaffolds, whereas the opposite was true for NSMASE2 mRNA. In ES-2 cells, TSAP6 and RAB27B mRNA expression was significantly higher in spheroids versus scaffolds. In addition, nSMase2 and TSAP6 protein expression was significantly higher in scaffolds compared to spheroids. CRISPR-edited cells with silencing of NSMASE2, TSAP6, and RAB27A/B had reduced migration, invasion, and MMP activity. Additionally, knockout (KO) of these molecules resulted in significantly diminished exosome secretion. In vivo assay showed that when injected to mice, OVCAR8 RAB27A/B KO cells, as opposed to control OVCAR8 cells, did not form ascites or visible tumor lesions and had reduced MMP expression. Conclusion. The present study provides evidence that different models for culturing ovarian carcinoma cells affect the expression of molecules mediating exosome secretion and that these molecules have a tumor-promoting role. Silencing these molecules may consequently have therapeutic relevance in this cancer.
Collapse
|
10
|
Brunetti M, Panagopoulos I, Micci F, Davidson B. MGMT
promoter methylation is a rare epigenetic change in malignant effusions. Cytopathology 2019; 31:12-15. [DOI: 10.1111/cyt.12782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Brunetti
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
- Department of PathologyNorwegian Radium HospitalOslo University Hospital Oslo Norway
- Institute of Clinical MedicineFaculty of MedicineUniversity of Oslo Oslo Norway
| | - Ioannis Panagopoulos
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
| | - Francesca Micci
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
| | - Ben Davidson
- Department of PathologyNorwegian Radium HospitalOslo University Hospital Oslo Norway
- Institute of Clinical MedicineFaculty of MedicineUniversity of Oslo Oslo Norway
| |
Collapse
|