1
|
Boychev N, Sethu S, de Laak RO, Gijs M. Global practices of tear fluid collection, storage, and molecular analysis - A questionnaire by the Tear Research Network. Cont Lens Anterior Eye 2025:102388. [PMID: 40102139 DOI: 10.1016/j.clae.2025.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE While tear fluid biomarkers are now widely studied, agreement on best practices for sample collection, storage, processing and analysis is still being built. To promote the application of tear fluid biomarkers and to encourage the generation of high-quality data, the aim of this survey was to understand current practices and perspectives. METHODS The Tear Research Network coordinated a self-administrated, digital survey between April 2023 and April 2024. The survey obtained information from 59 independent investigators and laboratories across 21 countries on demographics, tear fluid collection methods, storage conditions, processing steps, analysis techniques, and current and future perspectives for tear fluid research. RESULTS Most respondents were based in the US (24%), followed by the UK and India (10% each). Schirmer's strips were the preferred tear collection method (44%). Protein assays were the most favoured analytical technique overall (47%) and for tear fluid collected with Schirmer's strips (42%). More than 80% of the laboratories did not employ normalization strategies to account for sample volume variability in collection methods other than Schirmer's strips and capillaries. A significant majority (91%) agreed on the need to develop internationally accepted guidelines, with 81% indicating that they would modify their protocols accordingly. CONCLUSIONS This survey provides a global overview of tear fluid biomarker research practices, highlighting substantial variability in methodologies and a pressing need for standardised protocols. Addressing these inconsistencies through international guidelines could enhance reproducibility, facilitate global collaboration, and accelerate the clinical translation of tear fluid biomarkers.
Collapse
Affiliation(s)
- Nikolay Boychev
- Department of Clinical Education and Clinical Sciences, New England College of Optometry, Boston, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Schepens Eye Research Institute, Boston, USA
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Romy Op de Laak
- University Eye Clinic Maastricht, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Marlies Gijs
- University Eye Clinic Maastricht, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Boychev N, Yeung V, Yang M, Kanu LN, Ross AE, Kuang L, Chen L, Ciolino JB. Ocular tear fluid biomarkers collected by contact lenses. Biochem Biophys Res Commun 2024; 734:150744. [PMID: 39340927 PMCID: PMC11586051 DOI: 10.1016/j.bbrc.2024.150744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To collect tear fluid biomarkers from contact lenses (CLs) and determine the impact of CL wear duration. METHODS Rabbits were fitted with commercial etafilcon A CLs, which were collected after 1 min, 4 and 8 h (n = 4/time point). Tear fluid proteins and cytokines were extracted from the CLs and quantified. An exploratory comparison was performed between CLs and Schirmer Strips (SS) for a 1 min duration. RESULTS The concentration of MUC5AC was significantly higher after 4 h of CL wear. The expression of all investigated cytokines (IL-1α, IL-1β, IL-8, IL-17A, IL-21, Leptin, MIP-1β, MMP-9, NCAM-1, and TNF-α) was detectable after 1 min of CL wear, and over time, all showed significant variations throughout the 8-h CL wear period. Notably, IL-1α significantly increased by 8 h of CL wear, while MMP-9 decreased. Albumin and lysozyme did not show significant variations with CL wear. Differences between CLs and SS after 1 min were statistically significant for albumin, Leptin, TNF-α, IL-1α, IL-1β, and IL-8. CONCLUSIONS The duration of CL wear significantly affects the collection of some tear fluid biomarkers. Albumin, MUC5AC, and cytokines may have individual and synergistic diagnostic or prognostic potential. CLs and SS were similar for lysozyme and MUC5AC but differed in the collection of albumin and some cytokines. CLs are a viable tear fluid collection method for biomarker analyses and can be immediately added as a routine clinical test by being FDA-approved medical devices.
Collapse
Affiliation(s)
- Nikolay Boychev
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
| | - Vincent Yeung
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Levi N Kanu
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Amy E Ross
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Lin Chen
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Joseph B Ciolino
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
4
|
Ponzini E, Astolfi G, Grandori R, Tavazzi S, Versura P. Development, Optimization, and Clinical Relevance of Lactoferrin Delivery Systems: A Focus on Ocular Delivery. Pharmaceutics 2024; 16:804. [PMID: 38931931 PMCID: PMC11207246 DOI: 10.3390/pharmaceutics16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional protein found abundantly in secretions, including tears, plays a crucial role in ocular health through its antimicrobial, immunoregulatory, anti-inflammatory, and antioxidant activities. Advanced delivery systems are desirable to fully leverage its therapeutic potential in treating ocular diseases. The process of Lf quantification for diagnostic purposes underscores the importance of developing reliable, cost-effective detection methods, ranging from conventional techniques to advanced nano-based sensors. Despite the ease and non-invasiveness of topical administration for ocular surface diseases, challenges such as rapid drug elimination necessitate innovations, such as Lf-loaded contact lenses and biodegradable polymeric nanocapsules, to enhance drug stability and bioavailability. Furthermore, overcoming ocular barriers for the treatment of posterior segment disease calls for nano-formulations. The scope of this review is to underline the advancements in nanotechnology-based Lf delivery methods, emphasizing the pivotal role of multidisciplinary approaches and cross-field strategies in improving ocular drug delivery and achieving better therapeutic outcomes for a wide spectrum of eye conditions.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Gloria Astolfi
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Piera Versura
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Palagi 9, I-40138 Bologna, Italy
| |
Collapse
|
5
|
Adigal SS, Kuzhuppilly NIR, Hegde N, V R N, Rizvi A, John RV, George SD, Kartha VB, Bhandary SV, Chidangil S. HPLC-LED-Induced Fluorescence Analysis of Tear Fluids: An Objective Method for Primary Open Angle Glaucoma Diagnosis. Curr Eye Res 2024; 49:260-269. [PMID: 38078692 DOI: 10.1080/02713683.2023.2289862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
PURPOSE The study showcased the application of the lab-assembled HPLC-LED-IF system to analyze proteins in tear fluid samples collected from individuals diagnosed with primary open-angle glaucoma (POAG). METHODS Clinical application of the said technique was evaluated by recording chromatograms of tear fluid samples from control and POAG subjects and by analyzing the protein profile using multivariate analysis. The data analysis methods involved are principal component analysis (PCA), Match/No-Match, and artificial neural network (ANN) based binary classification for disease diagnosis. RESULTS Mahalanobis distance and spectral residual values calculated using a standard calibration set of clinically confirmed POAG samples for the Match/No-Match test gave 86.9% sensitivity and 81.8% specificity. ANN with leaving one out procedure has given 87.1% sensitivity and 81.8% specificity. CONCLUSION The results of the study revealed that the utilization of a 278 nm LED excitation in the HPLC system offers good sensitivity for detecting proteins at low concentrations allowing to obtain reliable protein profiles for the diagnosis of POAG.
Collapse
Affiliation(s)
- Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neetha I R Kuzhuppilly
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nagaraj Hegde
- Arion, The Randstad Netherlands, Eindhoven City, the Netherlands
| | - Nidheesh V R
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alisha Rizvi
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sajan D George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vasudevan B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Шеремета МС, Трухин АА, Ярцев ВД, Юдаков ДВ, Корчагина МО, Годжаева СА. [The lacrimal apparatus as an organ at risk during radionuclide therapy]. PROBLEMY ENDOKRINOLOGII 2024; 70:13-17. [PMID: 38433537 PMCID: PMC10926245 DOI: 10.14341/probl13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 03/05/2024]
Abstract
Within the framework of the article, the authors analyzed the available information about the damage to the lacrimal apparatus during radionuclide therapy. In focus of article lesions of the lacrimal production system, the main and accessory lacrimal glands, as well as lacrimal drainage are considered. It was found that damage to the lacrimal apparatus is characteristic of 131I therapy for thyroid cancer, as well as for radioligand therapy using anti-PSMA antibodies labeled with 177Lu and 225Ac. 177Lu-PSMA and 225Ac-PSMA may damage the lacrimal gland with the formation of a clinically pronounced "dry eye syndrome". The pathogenesis of such lesions is associated with the accumulation of a radioisotope in the tissues of the lacrimal apparatus, while during therapy with 131I, accumulation is realized due to the expression of the sodium-iodine symporter in the nasolacrimal duct, and during therapy with 177Lu-PSMA and 225Ac-PSMA, the radiobiological effect is realized in connection with the expression PSMA by lacrimal tissue. An analysis of the available sources showed that to date there are no results of systematic studies on the problem, there is a lack of knowledge regarding the individual risks of developing these complications, methods for their prevention that have proven effectiveness have not been developed, and the treatment methods used, having relatively low efficiency, are not specialized. The authors concluded that the strengthening of interdisciplinary interaction, as well as the organization verification methodology and correct studies, can contribute to solving problems related to the study of the complications under consideration.
Collapse
Affiliation(s)
- М. С. Шеремета
- Национальный медицинский исследовательский центр эндокринологии
| | - А. А. Трухин
- Национальный медицинский исследовательский центр эндокринологии
| | - В. Д. Ярцев
- ФГБНУ «НИИ глазных болезней им. М.М. Краснова»
| | - Д. В. Юдаков
- Национальный медицинский исследовательский центр эндокринологии
| | - М. О. Корчагина
- Национальный медицинский исследовательский центр эндокринологии
| | - С. А. Годжаева
- ФГБНУ «НИИ глазных болезней им. М.М. Краснова»; Первый московский государственный медицинский университет имени И.М. Сеченова
| |
Collapse
|
7
|
Kumar Barik A, Mathew C, Sanoop PM, John RV, Adigal SS, Bhat S, Pai KM, Bhandary SV, Devasia T, Upadhya R, Kartha VB, Chidangil S. Protein profile pattern analysis: A multifarious, in vitro diagnosis technique for universal screening. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123944. [PMID: 38056315 DOI: 10.1016/j.jchromb.2023.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Universal health care is attracting increased attention nowadays, because of the large increase in population all over the world, and a similar increase in life expectancy, leading to an increase in the incidence of non-communicable (various cancers, coronary diseases, neurological and old-age-related diseases) and communicable diseases/pandemics like SARS-COVID 19. This has led to an immediate need for a healthcare technology that should be cost-effective and accessible to all. A technology being considered as a possible one at present is liquid biopsy, which looks for markers in readily available samples like body fluids which can be accessed non- or minimally- invasive manner. Two approaches are being tried now towards this objective. The first involves the identification of suitable, specific markers for each condition, using established methods like various Mass Spectroscopy techniques (Surface-Enhanced Laser Desorption/Ionization Mass Spectroscopy (SELDI-MS), Matrix-Assisted Laser Desorption/Ionization (MALDI-MS), etc., immunoassays (Enzyme-Linked Immunoassay (ELISA), Proximity Extension Assays, etc.) and separation methods like 2-Dimensional Polyacrylamide Gel Electrophoresis (2-D PAGE), Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Capillary Electrophoresis (CE), etc. In the second approach, no attempt is made the identification of specific markers; rather an efficient separation method like High-Performance Liquid Chromatography/ Ultra-High-Performance Liquid Chromatography (HPLC/UPLC) is used to separate the protein markers, and a profile of the protein pattern is recorded, which is analysed by Artificial Intelligence (AI)/Machine Learning (MI) methods to derive characteristic patterns and use them for identifying the disease condition. The present report gives a summary of the current status of these two approaches and compares the two in the use of their suitability for universal healthcare.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Clint Mathew
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pavithran M Sanoop
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sujatha Bhat
- Division of Microbiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keerthilatha M Pai
- Department of Dental Surgery, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Lakowicz JR, Badugu R, Sivashanmugan K, Reece A. Remote Measurements of Tear Electrolyte Concentrations on Both Sides of an Inserted Contact Lens. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:463. [PMID: 38274567 PMCID: PMC10810336 DOI: 10.3390/chemosensors11080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this paper, a method is described to perform ion concentration measurements on both sides of an inserted contact lens, without physical contact with the eye or the contact lens. The outer surface of an eye is covered with a tear film that has multiple layers. The central aqueous layer contains electrolytes and proteins. When a contact lens is inserted, it becomes localized in the central layer, which creates two layers known as the pre-lens tear film (PLTF) and the post-lens tear film (PoLTF). The PoLTF is in direct contact with the sensitive corneal epithelial cells which control electrolyte concentrations in tears. It is difficult to measure the overall electrolyte concentration in tears because of the small 7 μL volume of bulk tears. No methods are known, and no method has been proposed, to selectively measure the concentrations of electrolytes in the smaller volumes of the PLTF and the PoLTF. In this paper, we demonstrate the ability to localize fluorophores on each side of a contact lens without probe mixing or diffusion across the lens. We measured the concentration of sodium in the region of the PoLTF using a sodium-sensitive fluorophore positioned on the inner surface of a contact lens. The fluorescence measurements do not require physical contact and are mostly independent of eye motion and fluorophore concentration. The method is generic and can be combined with ion-sensitive fluorophores for the other electrolytes in tears. Instrumentation for non-contact measurements is likely to be inexpensive with modern opto-electronic devices. We expect these lenses to be used for measurements of other ions in the PLTF and the PoLTF, and thus become useful for both research and in the diagnosis of infections, keratitis and biomarkers for diseases.
Collapse
Affiliation(s)
- Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Kundan Sivashanmugan
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Albert Reece
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
- Department of Obstetrics, Gynecology and Reproductive
Sciences, University of Maryland School of Medicine, 655 W. Baltimore St.,
Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Adigal SS, Bhandary SV, Hegde N, Nidheesh VR, John RV, Rizvi A, George SD, Kartha VB, Chidangil S. Protein profile analysis of tear fluid with hyphenated HPLC-UV LED-induced fluorescence detection for the diagnosis of dry eye syndrome. RSC Adv 2023; 13:22559-22568. [PMID: 37501778 PMCID: PMC10369224 DOI: 10.1039/d3ra04389d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Tear fluid contains organic and inorganic constituents, variations in their relative concentrations could provide valuable information and can be useful for the detection of several ophthalmological diseases. This report describes the application of the lab-assembled light-emitting diode (LED)-based high-performance liquid chromatography system for protein profiling of tear fluids to diagnose dry eye disease. Principal Component Analysis (PCA), match/no-match, and Artificial Neural Network (ANN) based binary classification of protein profile data were performed for disease diagnosis. Results from the match/no-match test of the protein profile data showed 94.4% sensitivity and 87.8% specificity. ANN with the leaving one out procedure has given 91.6% sensitivity and 93.9% specificity.
Collapse
Affiliation(s)
- Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 576104
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College Manipal Karnataka India 576104
| | - Nagaraj Hegde
- Ato-gear BV Schimmelt 28 5611 ZX Eindhoven Netherlands
| | - V R Nidheesh
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 576104
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 576104
| | - Alisha Rizvi
- Department of Ophthalmology, Kasturba Medical College Manipal Karnataka India 576104
| | - Sajan D George
- Centre for Applied Nanotechnology, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 567104
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 576104
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India 576104
| |
Collapse
|
10
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
11
|
Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. Sci Rep 2022; 12:4423. [PMID: 35292705 PMCID: PMC8924159 DOI: 10.1038/s41598-022-08492-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related macular degeneration (AMD) is an important cause of irreversible central blindness worldwide. Clinical manifestations range from asymptomatic in early and intermediate AMD to significant vision loss in late AMD. Approximately 10% of cases of early AMD eventually progress to the late advanced stage, influenced by the upregulation of vascular endothelial growth factor (VEGF). In this study, we evaluated VEGF concentration in the tears and serum of AMD patients. Our study revealed a significantly higher level of VEGF in the tears of patients with AMD compared with controls. The tear VEGF level has high sensitivity and specificity, and is significantly related to the severity of AMD, whilst serum VEGF level is non-specific and non-predictive of AMD severity. Thus, VEGF level in the tears may be used as a non-invasive biomarker for AMD progression. A large cohort study is needed for further verification.
Collapse
|
12
|
Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022; 197:113761. [PMID: 34800926 DOI: 10.1016/j.bios.2021.113761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|
13
|
Brunmair J, Bileck A, Schmidl D, Hagn G, Meier-Menches SM, Hommer N, Schlatter A, Gerner C, Garhöfer G. Metabolic phenotyping of tear fluid as a prognostic tool for personalised medicine exemplified by T2DM patients. EPMA J 2022; 13:107-123. [PMID: 35265228 PMCID: PMC8897537 DOI: 10.1007/s13167-022-00272-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
Abstract
Background/aims Concerning healthcare approaches, a paradigm change from reactive medicine to predictive approaches, targeted prevention, and personalisation of medical services is highly desirable. This raises demand for biomarker signatures that support the prediction and diagnosis of diseases, as well as monitoring strategies regarding therapeutic efficacy and supporting individualised treatments. New methodological developments should preferably rely on non-invasively sampled biofluids like sweat and tears in order to provide optimal compliance, reduce costs, and ensure availability of the biomaterial. Here, we have thus investigated the metabolic composition of human tears in comparison to finger sweat in order to find biofluid-specific marker molecules derived from distinct secretory glands. The comprehensive investigation of numerous biofluids may lead to the identification of novel biomarker signatures. Moreover, tear fluid analysis may not only provide insight into eye pathologies but may also be relevant for the prediction and monitoring of disease progression and/ or treatment of systemic disorders such as type 2 diabetes mellitus. Methods Sweat and tear fluid were sampled from 20 healthy volunteers using filter paper and commercially available Schirmer strips, respectively. Finger sweat analysis has already been successfully established in our laboratory. In this study, we set up and evaluated methods for tear fluid extraction and analysis using high-resolution mass spectrometry hyphenated with liquid chromatography, using optimised gradients each for metabolites and eicosanoids. Sweat and tears were systematically compared using statistical analysis. As second approach, we performed a clinical pilot study with 8 diabetic patients and compared them to 19 healthy subjects. Results Tear fluid was found to be a rich source for metabolic phenotyping. Remarkably, several molecules previously identified by us in sweat were found significantly enriched in tear fluid, including creatine or taurine. Furthermore, other metabolites such as kahweol and various eicosanoids were exclusively detectable in tears, demonstrating the orthogonal power for biofluid analysis in order to gain information on individual health states. The clinical pilot study revealed that many endogenous metabolites that have previously been linked to type 2 diabetes such as carnitine, tyrosine, uric acid, and valine were indeed found significantly up-regulated in tears of diabetic patients. Nicotinic acid and taurine were elevated in the diabetic cohort as well and may represent new biomarkers for diabetes specifically identified in tear fluid. Additionally, systemic medications, like metformin, bisoprolol, and gabapentin, were readily detectable in tears of patients. Conclusions The high number of identified marker molecules found in tear fluid apparently supports disease development prediction, developing preventive approaches as well as tailoring individual patients’ treatments and monitoring treatment efficacy. Tear fluid analysis may also support pharmacokinetic studies and patient compliance control. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00272-7.
Collapse
Affiliation(s)
- Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- VIROS - Vienna Institute for Research in Ocular Surgery - Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|