1
|
Zhang J, Yuan Z, Wang C, Liu L, Wang Y, Guo Y, Zhao G. Aqueous-phase dual-functional chiral perovskites for hydrogen sulfide (H 2S) detection and antibacterial applications in Escherichia coli. J Colloid Interface Sci 2024; 661:740-749. [PMID: 38325172 DOI: 10.1016/j.jcis.2024.01.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Perovskite nanocrystals (PNCs) have attracted extensive attention for their potential applications in biology. However, only a handful of PNCs have been scrutinized in the biological domain due to issues such as instability, poor dispersion, and size inhomogeneity in polar solvents. The development of dual-functional perovskite nanomaterials with hydrogen sulfide (H2S) sensing and antibacterial capabilities is particularly intriguing. In this study, we prepared chiral quasi-two-dimensional (quasi-2D) perovskite nanomaterials, Bio(S-PEA)2CsPb2Br7 and Bio(R-PEA)2CsPb2Br7, that were uniformly dispersed in aqueous media. The effective encapsulation of methoxypolyethylene glycol amine (mPEG-NH2) improved water stability and uniformity of particle size. Circular dichroism (CD) signals were created by the successful insertion of chiral cations. These perovskites as probes showed a rapid and sensitive fluorescence quenching response to H2S, and the effect of imaging detection was observed at the Escherichia coli (E. coli) level. As antibacterial agents, their pronounced positive charge properties facilitated membrane lysis and subsequent E. coli death, indicating a significant antibacterial effect. This work has preliminary explored the application of chiral perovskites in biology and provides insight into the development of bifunctional perovskite nanomaterials for biological applications.
Collapse
Affiliation(s)
- Jingran Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Zihan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China; National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Lele Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
2
|
Liu Y, Yan S, Wang T, He Q, Zhu X, Wang C, Liu D, Wang T, Xu X, Yu X. Achieving Color-Tunable Long Persistent Luminescence in Cs 2 CdCl 4 Ruddlesden-Popper Phase Perovskites. Angew Chem Int Ed Engl 2023; 62:e202308420. [PMID: 37469306 DOI: 10.1002/anie.202308420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Two-dimensional (2D)-halide perovskites have been enriched over recent years to offer remarkable features from diverse chemical structures and environmental stability endowed with exciting functionalities in photoelectric detectors and phosphorescence systems. However, the low conversion efficiency of singlet to triplet in 2D hybrid halide perovskites reduces phosphorescence lifetimes. In this study, the long persistent luminescence of 2D all-inorganic perovskites with a self-assembled 2D interlayer galleries structure is investigated. The results show that the decay time of the long persistent luminescence increases from 450 s to 600 s, and the luminescence color changes from cyan to orange, and the thermal stability of photoluminescence enhances dramatically after replacing Cd2+ by appropriate Mn2+ ions in 2D Cs2 CdCl4 Ruddlesden-Popper phase perovskites. Furthermore, diversified anti-counterfeiting modes are fabricated to highlight the promising applications of Cs2 CdCl4 perovskite systems with tunable persistent luminescence in advanced anti-counterfeiting. Therefore, our studies provide a novel model for realizing tunable long persistent luminescence of perovskite with 2D self-assembled layered structure for advanced anti-counterfeiting.
Collapse
Affiliation(s)
- Ya Liu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Shuangpeng Yan
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Tianchi Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Qingshan He
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiaodie Zhu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Chao Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Daiyuan Liu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610106, P. R. China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|