1
|
Madaan P, Gupta A, Gulati S. Pediatric Epilepsy Surgery: Indications and Evaluation. Indian J Pediatr 2021; 88:1000-1006. [PMID: 33740232 DOI: 10.1007/s12098-021-03668-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Epilepsy is a common neurological condition in children. It is usually amenable to drug therapy. However, nearly one-third of patients may be refractory to antiseizure drugs. Poor compliance and nonepileptic events should be ruled out as possible causes of drug-resistant epilepsy (DRE). After failing adequate trials of two appropriate antiseizure drugs, patients with focal DRE or poorly classifiable epilepsy or epileptic encephalopathy with focal electro-clinical features should be worked up for surgical candidacy. A randomized controlled trial provided a class I evidence for epilepsy surgery in pediatric DRE. Pre-surgical screening workup typically includes a high-resolution epilepsy protocol brain magnetic resonance imaging (MRI) and a high-quality in-patient video electroencephalography evaluation. Advanced investigations such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) may be required in selected cases especially when brain MRI is normal, and further evidence for anatomo-electro-clinical concordance is necessary to refine candidacy for surgery and surgical strategy. Some children may also need functional MRI to map eloquent regions of interest such as motor, sensory, and language functions to avoid unacceptable neurological deficits after surgery. Selected children may need invasive long-term electroencephalographic monitoring using stereotactically implanted intracranial depth electrodes or subdural grids. Surgical options include resective surgeries (lesionectomy, lobectomy, multilobar resections) and disconnective surgeries (corpus callosotomy, etc.) with the potential to obtain seizure freedom. Other surgical procedures, typically considered to be palliative are neuromodulation [deep brain stimulation (DBS), vagal nerve stimulation (VNS), and responsive neural stimulation (RNS)]. DBS and RNS are currently not approved in children. Pediatric DRE should be evaluated early considering the risk of epileptic encephalopathy and negative impact on cognition.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Gupta
- Pediatric Epilepsy, Epilepsy Center, Department of Neurology/Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sheffali Gulati
- Center of Excellence & Advanced Research on Childhood Neurodevelopmental Disorders, Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Haraguchi R, Hoshi H, Ichikawa S, Hanyu M, Nakamura K, Fukasawa K, Poza J, Rodríguez-González V, Gómez C, Shigihara Y. The Menstrual Cycle Alters Resting-State Cortical Activity: A Magnetoencephalography Study. Front Hum Neurosci 2021; 15:652789. [PMID: 34381340 PMCID: PMC8350571 DOI: 10.3389/fnhum.2021.652789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Resting-state neural oscillations are used as biomarkers for functional diseases such as dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes requires the identification and minimisation of potential confounding factors. While several studies have indicated that the menstrual cycle also alters brain activity, most of these studies were based on visual inspection rather than objective quantitative measures. In the present study, we aimed to clarify the effect of the menstrual cycle on spontaneous neural oscillations based on quantitative magnetoencephalography (MEG) parameters. Resting-state MEG activity was recorded from 25 healthy women with normal menstrual cycles. For each woman, resting-state brain activity was acquired twice using MEG: once during their menstrual period (MP) and once outside of this period (OP). Our results indicated that the median frequency and peak alpha frequency of the power spectrum were low, whereas Shannon spectral entropy was high, during the MP. Theta intensity within the right temporal cortex and right limbic system was significantly lower during the MP than during the OP. High gamma intensity in the left parietal cortex was also significantly lower during the MP than during the OP. Similar differences were also observed in the parietal and occipital regions between the proliferative (the late part of the follicular phase) and secretory phases (luteal phase). Our findings suggest that the menstrual cycle should be considered to ensure accurate interpretation of functional neuroimaging in clinical practice.
Collapse
Affiliation(s)
- Rika Haraguchi
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Mayuko Hanyu
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan
| | - Kohei Nakamura
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan.,Genomics Unit, Keio Cancer Centre, Keio University School of Medicine, Minato, Japan
| | | | - Jesús Poza
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain.,Instituto de Investigación en Matemáticas (IMUVA), University of Valladolid, Valladolid, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan.,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
3
|
Edmonds BD, Welch W, Sogawa Y, Mountz J, Bagić A, Patterson C. The Role of Magnetoencephalography and Single-Photon Emission Computed Tomography in Evaluation of Children With Drug-Resistant Epilepsy. J Child Neurol 2021; 36:673-679. [PMID: 33663250 DOI: 10.1177/0883073821996558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgery holds the best outcomes for drug-resistant epilepsy in children, making localization of a seizure focus essential. However, there is limited research on the contribution of magnetoencephalography and single-photon emission computed tomography (SPECT) to the presurgical evaluation of lesional and nonlesional pediatric patients. This study proposed to evaluate the concordance of SPECT and magnetoencephalography (MEG) to scalp electroencephalography (EEG) to determine their effective contribution to the presurgical evaluation. On review, MEG and SPECT studies for 28 drug-resistant epilepsy cases were completed at Children's Hospital of Pittsburgh from May 2012 to August 2018. Although not reaching statistical significance, MEG had increased lobar concordance with EEG compared with SPECT (68% vs 46%). MEG or SPECT results effectively provided localization data leading to 6 surgical evaluations and 3 resections with outcomes of Engel class I or II at 12 months. This study suggests MEG and SPECT provide valuable localizing information for presurgical epilepsy evaluation of children with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Benjamin D Edmonds
- Division of Child Neurology, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Welch
- Division of Child Neurology, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoshimi Sogawa
- Division of Child Neurology, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James Mountz
- 6595University of Pittsburgh Medical Center, Department of Radiology, Nuclear Medicine Division, Pittsburgh, PA, USA
| | - Anto Bagić
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - Christina Patterson
- Division of Child Neurology, 6619UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Hoshi H, Shigihara Y. Age- and gender-specific characteristics of the resting-state brain activity: a magnetoencephalography study. Aging (Albany NY) 2020; 12:21613-21637. [PMID: 33147568 PMCID: PMC7695396 DOI: 10.18632/aging.103956] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/01/2020] [Indexed: 12/29/2022]
Abstract
Aging and gender influence regional brain activities. Although these biases should be considered during the clinical examinations using magnetoencephalography, they have yet to be standardized. In the present study, resting-state magnetoencephalography data were recorded from 54 healthy females and 48 males aged 22 to 75 years, who were controlled for cognitive performance. The regional oscillatory power was estimated for each frequency band (delta, theta, alpha, beta, low-gamma, and high-gamma) using the sLORETA-like algorithm and the biases of age and gender were evaluated, respectively. The results showed that faster oscillatory powers increased with age in the rostral regions and decreased in the caudal regions, while few slower oscillatory powers changed with age. Gender differences in oscillatory powers were found in a broad frequency range, mostly in the caudal brain regions. The present study characterized the effects of healthy aging and gender asymmetricity on the regional resting-state brain activity, with the aim to facilitate the accurate and efficient use of magnetoencephalography in clinical practice.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro-shi, Hokkaido, Japan
| | | |
Collapse
|