1
|
Zhang S, Yao YL, Li Y, Zhang X, Wu Y. Genetic Correlations and Causalities between Alzheimer's Disease and 35 Biomarkers in Blood and Urine. Mol Neurobiol 2025:10.1007/s12035-025-04985-4. [PMID: 40279036 DOI: 10.1007/s12035-025-04985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by insidious and gradual onset. Identifying biomarkers associated with the early stages of AD is crucial for delaying its progression. In this study, we aimed to identify AD-related biomarkers in blood and urine by integrating genetic correlation analysis, shared genetic loci identification, and causal inference using linkage disequilibrium score regression (LDSC), conjunction false discovery rate (conjFDR), generalized summary data-based Mendelian randomization (GSMR) and two-sample Mendelian randomization (MR). To enhance robustness and minimize sample bias, we cross-validated findings using different AD GWAS datasets. Across multiple AD GWASs, we consistently observed nominally significant genetic correlations: AD was positively correlated with albumin (ALB) and negatively correlated with cystatin C (CYS) and urea (BUN). MR analysis further suggested that genetic predisposition to higher level of ALB and lower level of non-albumin protein (NAP) can represent risk factors for AD. In reverse MR analysis, a higher genetic risk for AD can predispose individuals to higher levels of ratio of aspartate aminotransferase to alanine aminotransferase (AST2ALT) and estimated glomerular filtration rate (EGFR), as well as lower level of creatinine (CRE). Overall, this study provides insights into the genetic correlations and causal relationships between AD and several biomarkers, offering potential candidates for AD diagnosis and management.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, Hubei, China
| | - Yu-Lin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yichen Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, Hubei, China
| | - Xiaofan Zhang
- Department of Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, 430012, Hubei, China.
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, 430012, Hubei, China.
| |
Collapse
|
2
|
Cora D, Al-Soufi W, Novo M. Amyloid capture and aggregation inhibition by human serum albumin. Int J Biol Macromol 2025; 301:140367. [PMID: 39880225 DOI: 10.1016/j.ijbiomac.2025.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) aggregation, primarily involving the peptides Aβ40 and Aβ42. Human serum albumin (HSA) has emerged as a potential therapeutic agent due to its ability to bind Aβ, inhibit aggregation, and promote disaggregation. This study quantitatively examined the interactions of HSA with both monomeric and aggregated forms of Aβ40 and Aβ42 using fluorescence techniques, including bulk steady-state fluorescence, fluorescence anisotropy, time-resolved fluorescence, and Fluorescence Correlation Spectroscopy (FCS). The binding constants determined from these methods were 4.45 × 104 M-1 for Aβ42 and 1.8 × 104M-1 for Aβ40, indicating strong but differential affinities. FCS demonstrated that HSA effectively dissociates Aβ aggregates, shifting the equilibrium toward monomeric states, with the disaggregation capacity positively correlated with HSA concentration. These findings support HSA's utility in therapies like plasma exchange to reduce the cerebral Aβ burden, providing critical insights into its mechanistic role and therapeutic potential.
Collapse
Affiliation(s)
- Diego Cora
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Wajih Al-Soufi
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes Novo
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
3
|
Martinez Pomier K, Ahmed R, Huang J, Melacini G. Inhibition of toxic metal-alpha synuclein interactions by human serum albumin. Chem Sci 2024; 15:3502-3515. [PMID: 38455030 PMCID: PMC10915811 DOI: 10.1039/d3sc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Human serum albumin (HSA), the most abundant protein in plasma and cerebrospinal fluid, not only serves as a crucial carrier of various exogenous and endogenous ligands but also modulates the aggregation of amyloidogenic proteins, including alpha synuclein (αSyn), which is associated with Parkinson's disease and other α-synucleinopathies. HSA decreases αSyn toxicity through the direct binding to monomeric and oligomeric αSyn species. However, it is possible that HSA also sequesters metal ions that otherwise promote aggregation. Cu(ii) ions, for example, enhance αSyn fibrillization in vitro, while also leading to neurotoxicity by generating reactive oxygen species (ROS). However, it is currently unclear if and how HSA affects Cu(ii)-binding to αSyn. Using an integrated set of NMR experiments, we show that HSA is able to chelate Cu(ii) ions from αSyn more efficiently than standard chelators such as EDTA, revealing an unexpected cooperativity between the HSA metal-binding sites. Notably, fatty acid binding to HSA perturbs this cooperativity, thus interfering with the sequestration of Cu(ii) ions from αSyn. We also observed that glycation of HSA diminished Cu(ii)-binding affinity, while largely preserving the degree of cooperativity between the HSA metal-binding sites. Additionally, our results show that Cu(ii)-binding to HSA stabilizes the interactions of HSA with αSyn primarily at two different regions, i.e. the N-terminus, Tyr 39 and the majority of the C-terminus. Our study not only unveils the effect of fatty acid binding and age-related posttranslational modifications, such as glycation, on the neuroprotective mechanisms of HSA, but also highlights the potential of αSyn as a viable NMR-based sensor to investigate HSA-metal interactions.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
4
|
Wang J, Chen M, Masters CL, Wang YJ. Translating blood biomarkers into clinical practice for Alzheimer's disease: Challenges and perspectives. Alzheimers Dement 2023; 19:4226-4236. [PMID: 37218404 DOI: 10.1002/alz.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
Early and accurate diagnosis of Alzheimer's disease (AD) in clinical practice is urgent with advances in AD treatment. Blood biomarker assays are preferential diagnostic tools for widespread clinical use with the advantages of being less invasive, cost effective, and easily accessible, and they have shown good performance in research cohorts. However, in community-based populations with maximum heterogeneity, great challenges are still faced in diagnosing AD based on blood biomarkers in terms of accuracy and robustness. Here, we analyze these challenges, including the confounding impact of systemic and biological factors, small changes in blood biomarkers, and difficulty in detecting early changes. Furthermore, we provide perspectives on several potential strategies to overcome these challenges for blood biomarkers to bridge the gap from research to clinical practice.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Tonev DG, Momchilova AB. Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines 2023; 11:328. [PMID: 36830870 PMCID: PMC9953422 DOI: 10.3390/biomedicines11020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Therapeutic plasma exchange (TPE) is an efficient extracorporeal blood purification technique to remove circulating autoantibodies and other pathogenic substances. Its mechanism of action in immune-mediated neurological disorders includes immediate intravascular reduction of autoantibody concentration, pulsed induction of antibody redistribution, and subsequent immunomodulatory changes. Conventional TPE with 1 to 1.5 total plasma volume (TPV) exchange is a well-established treatment in Guillain-Barre Syndrome, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Neuromyelitis Optica Spectrum Disorder, Myasthenia Gravis and Multiple Sclerosis. There is insufficient evidence for the efficacy of so-called low volume plasma exchange (LVPE) (<1 TPV exchange) implemented either by the conventional or by a novel nanomembrane-based TPE in these neurological conditions, including their impact on conductivity and neuroregenerative recovery. In this narrative review, we focus on the role of nanomembrane-based technology as an alternative LVPE treatment option in these neurological conditions. Nanomembrane-based technology is a promising type of TPE, which seems to share the basic advantages of the conventional one, but probably with fewer adverse effects. It could play a valuable role in patient management by ameliorating neurological symptoms, improving disability, and reducing oxidative stress in a cost-effective way. Further research is needed to identify which patients benefit most from this novel TPE technology.
Collapse
Affiliation(s)
- Dimitar G. Tonev
- Department of Anesthesiology and Intensive Care, Medical University of Sofia, University Hospital “Tzaritza Yoanna—ISUL”, 1527 Sofia, Bulgaria
| | - Albena B. Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|