1
|
Socha P, Jańczyk W, Zanetto A, Burra P, Czlonkowska A, Debray D, Ferenci P, Merle U, Nicastro E, Poujois A, Schmidt H, Tsochatzis E. EASL-ERN Clinical Practice Guidelines on Wilson's disease. J Hepatol 2025; 82:S0168-8278(24)02706-5. [PMID: 40089450 DOI: 10.1016/j.jhep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 03/17/2025]
Abstract
Wilson's disease is an autosomal recessive disorder of copper metabolism which affects the liver, brain and other organs. Diagnosis is based on: clinical features; biochemical tests, including plasma ceruloplasmin concentration, 24-h urinary copper excretion, copper content in the liver; and molecular analysis. Leipzig score and additionally relative exchangeable copper determination are recommended for diagnosis. Pharmacological therapy comprises chelating agents (penicillamine, trientine) and zinc salts, while only chelators are recommended for significant liver disease. Monitoring is based on clinical symptoms, liver tests and copper metabolism (urinary copper excretion, exchangeable copper) to detect poor compliance and over/under-treatment. Acute liver failure is challenging as making a diagnosis is difficult and pharmacological therapy may not be sufficient to save life. Liver transplantation has a well-defined role in Wilsonian acute hepatic failure but may also be considered in neurological disease.
Collapse
|
2
|
Wang X, Chen H, Shao N, Zhang X, Huang C, Li X, Zhang J, Chang Z, Tang L, Xie D. Protective Effect of Aloe-emodin on Cognitive Function in Copper-loaded Rats Based on The Inhibition of Hippocampal Neuron Ferroptosis. Curr Neurovasc Res 2025; 21:458-471. [PMID: 39400027 DOI: 10.2174/0115672026348862241003042336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aloe-emodin (AE), a monomer derived from traditional Chinese medicine, has demonstrated remarkable efficacy in the clinical management of cognitive disorders. Ferroptosis (FPT), a specialized form of programmed cell death, plays a critical role in the pathological progression of various cognitive diseases. METHODS This study explored the therapeutic potential of AE in a rat model of Wilson's disease cognitive impairments (WDCI) and examined whether these effects are mediated through the silencing information regulator 1 (SIRT1)-regulated FPT signaling pathway. Employing techniques, such as the Morris water maze (MWM), Hematoxylin & eosin (H&E) staining, Transmission electron microscopy (TEM), Immunofluorescence (IF), assessments of oxidative stress markers, and measurements of FPT-related protein levels, we evaluated the extent of SIRT1-mediated FPT and the therapeutic efficacy of AE. RESULTS The findings from the WD copper-loaded rat model experiments revealed that MWM, H&E, TEM, and IF outcomes indicated AE's potential to promote the restoration of learning and memory functions, ameliorate hippocampal neuronal morphological damage, and preserve cell membrane integrity. Results from western blot (WB) and ELISA analyses demonstrated that AE markedly upregulated the expression of SIRT1, nuclear factor erythroid-2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SCL7A11), and glutathione peroxidase 4 (GPX4) proteins while simultaneously reversing the expression of oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), and reactive oxygen species (ROS). Consequently, we posit that AE may attenuate WD copper-loaded rat model hippocampal neuronal FPT by activating the SIRT1-mediated signaling pathway. CONCLUSION These findings suggested that AE mitigates WD copper-loaded rat model hippocampal neuronal damage through the activation of SIRT1-mediated FPT, thereby presenting a valuable candidate Chinese herbal monomer for the clinical treatment of WDCI.
Collapse
Affiliation(s)
- Xie Wang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Hong Chen
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Nan Shao
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Xiaoyan Zhang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Chenye Huang
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Xiangjun Li
- The First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China
| | - Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| | - Ze Chang
- The First Clinical Medical College, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100089, China
| | - Le Tang
- Quanjiao County Hospital of Traditional Chinese Medicine, Chuzhou, 239500, China
| | - Daojun Xie
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| |
Collapse
|
3
|
Laurencin C, Poujois A, Bonjour M, Demily C, Klinger H, Roze E, Leclert V, Danaila T, Langlois‐Jacques C, Couchonnal E, Woimant F, Obadia MA, Perez G, Pernon M, Blanchet L, Broussolle E, Vidailhet M, Kassai B, Moro E, Karachi C, Polo G, Grabli D, Portefaix A, Thobois S. Deep brain stimulation for severe dystonia associated with Wilson disease: A prospective multicenter meta-analysis of an N-of-1 trial. Eur J Neurol 2025; 32:e16524. [PMID: 39468897 PMCID: PMC11622510 DOI: 10.1111/ene.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND PURPOSE Disabling dystonia despite optimal medical treatment is common in Wilson disease (WD). No controlled study has evaluated the effect of deep brain stimulation (DBS) on dystonia related to WD. This study was undertaken to evaluate the efficacy of DBS on dystonia related to WD. METHODS A meta-analysis of an N-of-1 prospective, randomized, double-blind, multicenter DBS study was conducted at two French WD reference centers. Main inclusion criteria were patients with WD, stabilized for at least 6 months with significant disability due to dystonia despite optimized medical treatment. The subthalamic nucleus (STN) was targeted for bradykinetic patients with tonic dystonia, and the internal globus pallidus (GPi) was chosen for patients with hyperkinetic dystonia. Each patient underwent two periods of DBS "on" and two periods of DBS "off," each lasting 4 months. The order of stimulation conditions was randomized. The primary outcome was the change in the Canadian Occupational Performance Measure Performance (COPM-P) and Satisfaction scores after each 4-month period. Secondary outcomes were changes in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) severity and disability scores and Unified Wilson's Disease Rating Scale (UWDRS) scores. RESULTS Between 12 May 2016 and 7 October 2022, three patients were included. Two patients received bilateral GPi DBS, and one received bilateral STN DBS. There was no change of COPM-P (p = 0.956), BFMDRS, and UWDRS scores. No serious adverse events were reported. CONCLUSIONS STN or GPi DBS are ineffective on dystonia related to WD.
Collapse
Affiliation(s)
- Chloé Laurencin
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH‐PARK TeamUniversity Lyon 1LyonFrance
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Femme Mère Enfant HospitalHospices Civils de LyonBronFrance
| | - Aurelia Poujois
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Maxime Bonjour
- Department of BiostatisticsHospices Civils de LyonLyonFrance
- Laboratoire de Biométrie et Biologie ÉvolutiveUniversity Lyon 1VilleurbanneFrance
- Faculté de Médecine Lyon EstUniversity Lyon 1LyonFrance
| | - Caroline Demily
- Reference Center for Rare Diseases With Psychiatric Phenotype GénopsyLe Vinatier HospitalBronFrance
| | - Hélène Klinger
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Emmanuel Roze
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Victoire Leclert
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Teodor Danaila
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Carole Langlois‐Jacques
- Department of BiostatisticsHospices Civils de LyonLyonFrance
- Laboratoire de Biométrie et Biologie ÉvolutiveUniversity Lyon 1VilleurbanneFrance
- Faculté de Médecine Lyon EstUniversity Lyon 1LyonFrance
| | - Eduardo Couchonnal
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Femme Mère Enfant HospitalHospices Civils de LyonBronFrance
| | - France Woimant
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Mickael Alexandre Obadia
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Gwennaelle Perez
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Michaela Pernon
- National Reference Center for Wilson Disease and Other Copper‐Related Rare Diseases, Neurology DepartmentRothschild Foundation HospitalParisFrance
| | - Laurianne Blanchet
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Emmanuel Broussolle
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
| | - Marie Vidailhet
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Behrouz Kassai
- Centre d'Investigation Clinique 1407, Hospices Civils de LyonLouis Pradel HospitalBronFrance
| | - Elena Moro
- Division of Neurology CHU Grenoble AlpesGrenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes UniversityGrenobleFrance
| | - Carine Karachi
- Neurosurgery Department, Hôpital de la Salpêtrière, Groupe Hospitalier Pitié‐SalpêtrièreAssistance Publique‐Hôpitaux de ParisParisFrance
| | - Gustavo Polo
- Neurosurgery Department A, Hospices Civils de LyonPierre Wertheimer Neurological HospitalBronFrance
| | - David Grabli
- Sorbonne University, INSERM, CNRSParisFrance
- Brain Institute, Assistance Publique Hôpitaux de Paris, Salpêtrière HospitalParisFrance
| | - Aurélie Portefaix
- Centre d'Investigation Clinique 1407, Hospices Civils de LyonLouis Pradel HospitalBronFrance
| | - Stéphane Thobois
- Department of Neurology C, Parkinson Expert Center, Pierre Wertheimer Neurological HospitalHospices Civils de LyonBronFrance
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PATH‐PARK TeamUniversity Lyon 1LyonFrance
| |
Collapse
|
4
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
5
|
Gromadzka G, Wilkaniec A, Tarnacka B, Hadrian K, Bendykowska M, Przybyłkowski A, Litwin T. The Role of Glia in Wilson's Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. Int J Mol Sci 2024; 25:7545. [PMID: 39062788 PMCID: PMC11276698 DOI: 10.3390/ijms25147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood-brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson's disease and Alzheimer's disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, Spartańska 1, 02-637 Warsaw, Poland
| | - Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Maria Bendykowska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
6
|
Chen H, Wang X, Zhang J, Xie D. Effect of high-frequency repetitive transcranial magnetic stimulation on cognitive impairment in WD patients based on inverse probability weighting of propensity scores. Front Neurosci 2024; 18:1375234. [PMID: 38660222 PMCID: PMC11039870 DOI: 10.3389/fnins.2024.1375234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Hepatolenticular degeneration [Wilson disease (WD)] is an autosomal recessive metabolic disease characterized by copper metabolism disorder. Cognitive impairment is a key neuropsychiatric symptom of WD. At present, there is no effective treatment for WD-related cognitive impairment. Methods In this study, high-frequency repetitive transcranial magnetic stimulation (rTMS) was used to treat WD-related cognitive impairment, and inverse probability weighting of propensity scores was used to correct for confounding factors. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Boston Naming Test (BNT), Clock Drawing Test (CDT) and Trail Making Test (TMT) were used to evaluate overall cognition and specific cognitive domains. Results The MMSE, MoCA and CDT scores after treatment were significantly different from those before treatment (MMSE: before adjustment: OR = 1.404, 95% CI: 1.271-1.537; after adjustment: OR = 1.381, 95% CI: 1.265-1.497, p < 0.001; MoCA: before adjustment: OR = 1.306, 95% CI: 1.122-1.490; after adjustment: OR = 1.286, 95% CI: 1.104; AVLT: OR = 1.161, 95% CI: 1.074-1.248; after adjustment: OR = 1.145, 95% CI: 1.068-1.222, p < 0.05; CDT: OR = 1.524, 95% CI: 1.303-1.745; after adjustment: OR = 1.518, 95% CI: 1.294-1.742, p < 0.001). The BNT and TMT scores after adjustment were not significantly different from those before adjustment (BNT: before adjustment: OR = 1.048, 95% CI: 0.877-1.219; after adjustment: OR = 1.026, 95% CI: 0.863-1.189, p > 0.05; TMT: before adjustment: OR = 0.816, 95% CI: 1.122-1.490; after adjustment: OR = 0.791, 95% CI: 0.406-1.176, p > 0.05). Conclusion High-frequency rTMS can effectively improve cognitive impairment, especially memory and visuospatial ability, in WD patients. The incidence of side effects is low, and the safety is good.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Litwin T, Antos A, Smolinski L. Sexual disturbances - An unrecognized problem in Wilson's disease. J Clin Neurosci 2024; 120:1-2. [PMID: 38154344 DOI: 10.1016/j.jocn.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Lukasz Smolinski
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|